Bell-shaped sequences

IF 0.7 3区 数学 Q2 MATHEMATICS
Mateusz Kwa'snicki, Jacek Wszola
{"title":"Bell-shaped sequences","authors":"Mateusz Kwa'snicki, Jacek Wszola","doi":"10.4064/sm220923-2-2","DOIUrl":null,"url":null,"abstract":"A nonnegative real function $f$ is said to be bell-shaped if it converges to zero at $\\pm\\infty$ and the $n$th derivative of $f$ changes sign $n$ times for every $n = 0, 1, 2, \\ldots$ In a similar way, we may say that a nonnegative sequence $a_k$ is bell-shaped if it converges to zero and the $n$th iterated difference of $a_k$ changes sign $n$ times for every $n = 0, 1, 2, \\ldots$ Bell-shaped functions were recently characterised by Thomas Simon and the first author. In the present paper we provide an analogous description of bell-shaped sequences. More precisely, we identify bell-shaped sequences with convolutions of P\\'olya frequency sequences and completely monotone sequences, and we characterise the corresponding generating functions as exponentials of appropriate Pick functions.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220923-2-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A nonnegative real function $f$ is said to be bell-shaped if it converges to zero at $\pm\infty$ and the $n$th derivative of $f$ changes sign $n$ times for every $n = 0, 1, 2, \ldots$ In a similar way, we may say that a nonnegative sequence $a_k$ is bell-shaped if it converges to zero and the $n$th iterated difference of $a_k$ changes sign $n$ times for every $n = 0, 1, 2, \ldots$ Bell-shaped functions were recently characterised by Thomas Simon and the first author. In the present paper we provide an analogous description of bell-shaped sequences. More precisely, we identify bell-shaped sequences with convolutions of P\'olya frequency sequences and completely monotone sequences, and we characterise the corresponding generating functions as exponentials of appropriate Pick functions.
钟形序列
如果一个非负实函数$f$在$\pm\infty$处收敛于零,则称其为钟形函数,并且$f$的$n$阶导数在每个$n = 0, 1, 2, \ldots$处都改变符号$n$次。如果一个非负序列$a_k$收敛于零,我们可以说它是钟形的,并且每个$n = 0, 1, 2, \ldots$钟形函数的$n$次迭代差分$a_k$变化符号$n$的次数最近由Thomas Simon和第一作者描述。本文给出了钟形序列的一个类似描述。更准确地说,我们用Pólya频率序列和完全单调序列的卷积识别钟形序列,并将相应的生成函数表征为适当的Pick函数的指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信