Carl Bootland, W. Castryck, Ilia Iliashenko, F. Vercauteren
{"title":"Efficiently Processing Complex-Valued Data in Homomorphic Encryption","authors":"Carl Bootland, W. Castryck, Ilia Iliashenko, F. Vercauteren","doi":"10.1515/jmc-2015-0051","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new homomorphic encryption scheme that is natively capable of computing with complex numbers. This is done by generalizing recent work of Chen, Laine, Player and Xia, who modified the Fan–Vercauteren scheme by replacing the integral plaintext modulus t by a linear polynomial X − b. Our generalization studies plaintext moduli of the form Xm + b. Our construction significantly reduces the noise growth in comparison to the original FV scheme, so much deeper arithmetic circuits can be homomorphically executed.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"55 - 65"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2015-0051","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2015-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 11
Abstract
Abstract We introduce a new homomorphic encryption scheme that is natively capable of computing with complex numbers. This is done by generalizing recent work of Chen, Laine, Player and Xia, who modified the Fan–Vercauteren scheme by replacing the integral plaintext modulus t by a linear polynomial X − b. Our generalization studies plaintext moduli of the form Xm + b. Our construction significantly reduces the noise growth in comparison to the original FV scheme, so much deeper arithmetic circuits can be homomorphically executed.