Moduli of Galois Representations

IF 1.1 2区 数学 Q1 MATHEMATICS
Y. Taguchi
{"title":"Moduli of Galois Representations","authors":"Y. Taguchi","doi":"10.4171/PRIMS/53-4-1","DOIUrl":null,"url":null,"abstract":"We develop a theory of moduli of Galois representations. More generally, for an object in a rather general class A of non-commutative topological rings, we construct a moduli space of its absolutely irreducible representations of a fixed degree as a (so we call) “f-A scheme”. Various problems on Galois representations can be reformulated in terms of such moduli schemes. As an application, we show that the “difference” between the strong and week versions of the finiteness conjecture of Fontaine-Mazur is filled in by the finiteness conjecture of Khare-Moon.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2017-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/53-4-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/53-4-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theory of moduli of Galois representations. More generally, for an object in a rather general class A of non-commutative topological rings, we construct a moduli space of its absolutely irreducible representations of a fixed degree as a (so we call) “f-A scheme”. Various problems on Galois representations can be reformulated in terms of such moduli schemes. As an application, we show that the “difference” between the strong and week versions of the finiteness conjecture of Fontaine-Mazur is filled in by the finiteness conjecture of Khare-Moon.
Galois表示的模
我们发展了伽罗瓦表示模的理论。更一般地说,对于非交换拓扑环的一个相当一般的a类中的一个对象,我们将其固定度的绝对不可约表示的模空间构造为(我们称之为)“f-a方案”。关于伽罗瓦表示的各种问题可以用这种模格式来重新表述。作为一个应用,我们证明了Fontaine Mazur有限性猜想的强版本和周版本之间的“差异”是由Khare Moon的有限性猜想填补的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信