ON APPLICABILITY OF ADDITIVE TECHNOLOGY IN PRODUCING NOZZLES FOR JET NOISE INVESTIGATIONS

IF 0.1 Q4 ACOUSTICS
I. Khramtsov, E. Cherenkova, V. Palchikovskiy, O. Kustov
{"title":"ON APPLICABILITY OF ADDITIVE TECHNOLOGY IN PRODUCING NOZZLES FOR JET NOISE INVESTIGATIONS","authors":"I. Khramtsov, E. Cherenkova, V. Palchikovskiy, O. Kustov","doi":"10.36336/akustika201934180","DOIUrl":null,"url":null,"abstract":"The split-type conical nozzles with replaceable exit sections with diameters of 30, 40 and 50 mm were designed and produced from steel by machine turning. In addition, the replaceable output parts of the nozzles with the same diameters were produced by additive technology (fused deposition manufacturing) from ABS plastic. In the acoustic anechoic chamber, the noise measurements of a single-stream cold air jet for all the nozzles at jet velocities in the range of 0.3-0.7 Mach numbers were carried out. The noise measurements were performed on distance of 2 m from the center of the nozzle exit section at angles from 30 to 105o. For different directions of noise radiation and different velocities of the jet, the power spectral density and overall sound pressure level were determined. The obtained results demonstrates that the jet noise for nozzles with diameter of 40 and 50 mm from steel and ABS plastic differs by no more than 1 dB, which is within the measurement error for these types of experiments. The nozzles with diameter 30 mm have a higher difference in noise, which can be explained by the more sensitivity of a nozzle with a small diameter to the deviations of geometric parameters when it produced by additive technology.","PeriodicalId":42295,"journal":{"name":"Akustika","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Akustika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36336/akustika201934180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 4

Abstract

The split-type conical nozzles with replaceable exit sections with diameters of 30, 40 and 50 mm were designed and produced from steel by machine turning. In addition, the replaceable output parts of the nozzles with the same diameters were produced by additive technology (fused deposition manufacturing) from ABS plastic. In the acoustic anechoic chamber, the noise measurements of a single-stream cold air jet for all the nozzles at jet velocities in the range of 0.3-0.7 Mach numbers were carried out. The noise measurements were performed on distance of 2 m from the center of the nozzle exit section at angles from 30 to 105o. For different directions of noise radiation and different velocities of the jet, the power spectral density and overall sound pressure level were determined. The obtained results demonstrates that the jet noise for nozzles with diameter of 40 and 50 mm from steel and ABS plastic differs by no more than 1 dB, which is within the measurement error for these types of experiments. The nozzles with diameter 30 mm have a higher difference in noise, which can be explained by the more sensitivity of a nozzle with a small diameter to the deviations of geometric parameters when it produced by additive technology.
添加剂技术在射流噪声研究喷嘴生产中的应用
采用车削加工技术,设计并生产了直径为30mm、40mm和50mm的可更换出口段的分体式锥形喷嘴。此外,采用增材制造技术(熔融沉积制造)以ABS塑料为原料,生产出相同直径的可更换喷嘴输出部件。在声学消声室中,对单流冷空气射流在0.3 ~ 0.7马赫数范围内的所有喷嘴进行了噪声测量。噪声测量在距离喷管出口截面中心2 m处进行,角度为30 ~ 1050度。在不同的噪声辐射方向和不同的射流速度下,确定了功率谱密度和总声压级。结果表明,直径为40 mm和50 mm的钢制和ABS塑料喷嘴的射流噪声差异不超过1 dB,在这两类实验的测量误差范围内。直径为30 mm的喷嘴噪声差异较大,这可以解释为直径较小的喷嘴对增材制造时几何参数的偏差更敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Akustika
Akustika ACOUSTICS-
CiteScore
0.80
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信