Embedding spanning disjoint cycles in augmented cube networks with prescribed vertices in each cycle

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Weiyan Wu, Eminjan Sabir, Hongwei Qiao
{"title":"Embedding spanning disjoint cycles in augmented cube networks with prescribed vertices in each cycle","authors":"Weiyan Wu, Eminjan Sabir, Hongwei Qiao","doi":"10.1080/17445760.2023.2231162","DOIUrl":null,"url":null,"abstract":"One of the important issues in evaluating an interconnection network is to study the Hamiltonian cycle embedding problems. For a positive integer k, a graph G is said to be spanning k-cyclable if for k prescribed vertices , there exist k disjoint cycles such that the union of spans G, and each contains exactly one vertex of . According to the definition, the problem of finding hamiltonian cycle focuses on k = 1. The notion of spanning cyclability can be applied to the problem of identifying faulty processors and other related issues in interconnection networks. The n-dimensional augmented cube is an important node-symmetric variant of the n-dimensional hypercube . In this paper, we prove that with is spanning k-cyclable for .","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2023.2231162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the important issues in evaluating an interconnection network is to study the Hamiltonian cycle embedding problems. For a positive integer k, a graph G is said to be spanning k-cyclable if for k prescribed vertices , there exist k disjoint cycles such that the union of spans G, and each contains exactly one vertex of . According to the definition, the problem of finding hamiltonian cycle focuses on k = 1. The notion of spanning cyclability can be applied to the problem of identifying faulty processors and other related issues in interconnection networks. The n-dimensional augmented cube is an important node-symmetric variant of the n-dimensional hypercube . In this paper, we prove that with is spanning k-cyclable for .
在增广立方体网络中嵌入跨越不相交的环,每个环中有规定的顶点
评价互连网络的一个重要问题是研究哈密顿循环嵌入问题。对于一个正整数k,如果对于k个规定的顶点,存在k个不相交的环,使得并张成G,并且每个环恰好包含一个顶点,则图G是可张成k循环的。根据定义,寻找哈密顿循环的问题集中在k = 1。跨越可循环性的概念可以应用于互连网络中识别故障处理器和其他相关问题的问题。n维增广立方体是n维超立方体的一个重要的节点对称变体。在本文中,我们证明了对于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信