A tuning-free efficient test for marginal linear effects in high-dimensional quantile regression

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Kai Xu, Nan An
{"title":"A tuning-free efficient test for marginal linear effects in high-dimensional quantile regression","authors":"Kai Xu,&nbsp;Nan An","doi":"10.1007/s10463-023-00877-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work is concerned with testing the marginal linear effects of high-dimensional predictors in quantile regression. We introduce a novel test that is constructed using maxima of pairwise quantile correlations, which permit consistent assessment of the marginal linear effects. The proposed testing procedure is computationally efficient with the aid of a simple multiplier bootstrap method and does not involve any need to select tuning parameters, apart from the number of bootstrap replications. Other distinguishing features of the new procedure are that it imposes no structural assumptions on the unknown dependence structures of the predictor vector and allows the dimension of the predictor vector to be exponentially larger than sample size. To broaden the applicability, we further extend the preceding analysis to the censored response case. The effectiveness of our proposed approach in the finite samples is illustrated through simulation studies.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00877-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This work is concerned with testing the marginal linear effects of high-dimensional predictors in quantile regression. We introduce a novel test that is constructed using maxima of pairwise quantile correlations, which permit consistent assessment of the marginal linear effects. The proposed testing procedure is computationally efficient with the aid of a simple multiplier bootstrap method and does not involve any need to select tuning parameters, apart from the number of bootstrap replications. Other distinguishing features of the new procedure are that it imposes no structural assumptions on the unknown dependence structures of the predictor vector and allows the dimension of the predictor vector to be exponentially larger than sample size. To broaden the applicability, we further extend the preceding analysis to the censored response case. The effectiveness of our proposed approach in the finite samples is illustrated through simulation studies.

高维分位数回归中边际线性效应的无调谐有效检验
这项工作主要是测试量子回归中高维预测因子的边际线性效应。我们引入了一种新的检验方法,利用成对量级相关性的最大值构建检验,从而对边际线性效应进行一致的评估。借助简单的乘数引导方法,所提出的检验程序计算效率很高,而且除了引导复制的次数外,无需选择任何调整参数。新程序的其他显著特点是,它对预测向量的未知依赖结构不做任何结构性假设,并允许预测向量的维度以指数形式大于样本量。为了扩大适用范围,我们将前面的分析进一步扩展到有删减的响应情况。我们通过模拟研究说明了我们提出的方法在有限样本中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信