{"title":"A tuning-free efficient test for marginal linear effects in high-dimensional quantile regression","authors":"Kai Xu, Nan An","doi":"10.1007/s10463-023-00877-3","DOIUrl":null,"url":null,"abstract":"<div><p>This work is concerned with testing the marginal linear effects of high-dimensional predictors in quantile regression. We introduce a novel test that is constructed using maxima of pairwise quantile correlations, which permit consistent assessment of the marginal linear effects. The proposed testing procedure is computationally efficient with the aid of a simple multiplier bootstrap method and does not involve any need to select tuning parameters, apart from the number of bootstrap replications. Other distinguishing features of the new procedure are that it imposes no structural assumptions on the unknown dependence structures of the predictor vector and allows the dimension of the predictor vector to be exponentially larger than sample size. To broaden the applicability, we further extend the preceding analysis to the censored response case. The effectiveness of our proposed approach in the finite samples is illustrated through simulation studies.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-023-00877-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This work is concerned with testing the marginal linear effects of high-dimensional predictors in quantile regression. We introduce a novel test that is constructed using maxima of pairwise quantile correlations, which permit consistent assessment of the marginal linear effects. The proposed testing procedure is computationally efficient with the aid of a simple multiplier bootstrap method and does not involve any need to select tuning parameters, apart from the number of bootstrap replications. Other distinguishing features of the new procedure are that it imposes no structural assumptions on the unknown dependence structures of the predictor vector and allows the dimension of the predictor vector to be exponentially larger than sample size. To broaden the applicability, we further extend the preceding analysis to the censored response case. The effectiveness of our proposed approach in the finite samples is illustrated through simulation studies.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.