{"title":"BMO and the John-Nirenberg Inequality on Measure Spaces","authors":"G. Dafni, Ryan Gibara, Andrew Lavigne","doi":"10.1515/agms-2020-0115","DOIUrl":null,"url":null,"abstract":"Abstract We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢. The aim is to see how much of the familiar BMO machinery holds when metric notions have been replaced by measure-theoretic ones. In particular, three aspects of BMO are considered: its properties as a Banach space, its relation with Muckenhoupt weights, and the John-Nirenberg inequality. We give necessary and sufficient conditions on a decomposable measure space 𝕏 for BMO𝒢 (𝕏) to be a Banach space modulo constants. We also develop the notion of a Denjoy family 𝒢, which guarantees that functions in BMO𝒢 (𝕏) satisfy the John-Nirenberg inequality on the elements of 𝒢.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"8 1","pages":"335 - 362"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0115","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0115","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We study the space BMO𝒢 (𝕏) in the general setting of a measure space 𝕏 with a fixed collection 𝒢 of measurable sets of positive and finite measure, consisting of functions of bounded mean oscillation on sets in 𝒢. The aim is to see how much of the familiar BMO machinery holds when metric notions have been replaced by measure-theoretic ones. In particular, three aspects of BMO are considered: its properties as a Banach space, its relation with Muckenhoupt weights, and the John-Nirenberg inequality. We give necessary and sufficient conditions on a decomposable measure space 𝕏 for BMO𝒢 (𝕏) to be a Banach space modulo constants. We also develop the notion of a Denjoy family 𝒢, which guarantees that functions in BMO𝒢 (𝕏) satisfy the John-Nirenberg inequality on the elements of 𝒢.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.