Formally comparing topic models and human-generated qualitative coding of physician mothers’ experiences of workplace discrimination

IF 6.5 1区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
Adam S. Miner, Sheridan A Stewart, M. Halley, Laura K. Nelson, Eleni Linos
{"title":"Formally comparing topic models and human-generated qualitative coding of physician mothers’ experiences of workplace discrimination","authors":"Adam S. Miner, Sheridan A Stewart, M. Halley, Laura K. Nelson, Eleni Linos","doi":"10.1177/20539517221149106","DOIUrl":null,"url":null,"abstract":"Differences between computationally generated and human-generated themes in unstructured text are important to understand yet difficult to assess formally. In this study, we bridge these approaches through two contributions. First, we formally compare a primarily computational approach, topic modeling, to a primarily human-driven approach, qualitative thematic coding, in an impactful context: physician mothers’ experience of workplace discrimination. Second, we compare our chosen topic model to a principled alternative topic model to make explicit study design decisions meriting consideration in future research. By formally contrasting computationally generated (i.e. topic modeling) and human-generated (i.e. thematic coding) knowledge, we shed light on issues of interest to several audiences, notably computational social scientists who wish to understand study design tradeoffs, and qualitative researchers who may wish to leverage computational methods to improve the speed and reproducibility of labor-intensive coding. Although useful in other domains, we highlight the value of fast, reproducible methods to better understand experiences of workplace discrimination.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517221149106","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Differences between computationally generated and human-generated themes in unstructured text are important to understand yet difficult to assess formally. In this study, we bridge these approaches through two contributions. First, we formally compare a primarily computational approach, topic modeling, to a primarily human-driven approach, qualitative thematic coding, in an impactful context: physician mothers’ experience of workplace discrimination. Second, we compare our chosen topic model to a principled alternative topic model to make explicit study design decisions meriting consideration in future research. By formally contrasting computationally generated (i.e. topic modeling) and human-generated (i.e. thematic coding) knowledge, we shed light on issues of interest to several audiences, notably computational social scientists who wish to understand study design tradeoffs, and qualitative researchers who may wish to leverage computational methods to improve the speed and reproducibility of labor-intensive coding. Although useful in other domains, we highlight the value of fast, reproducible methods to better understand experiences of workplace discrimination.
对医生母亲工作场所歧视经历的主题模型和人为生成的定性编码进行正式比较
在非结构化文本中,计算生成和人工生成主题之间的差异对理解很重要,但很难正式评估。在本研究中,我们通过两个贡献来连接这些方法。首先,我们正式比较了主要的计算方法,主题建模,主要人为驱动的方法,定性主题编码,在一个有影响力的背景下:医生母亲的工作场所歧视的经历。其次,我们将选择的主题模型与有原则的备选主题模型进行比较,以做出明确的研究设计决策,以便在未来的研究中加以考虑。通过正式对比计算生成(即主题建模)和人类生成(即主题编码)的知识,我们揭示了一些受众感兴趣的问题,特别是希望理解研究设计权衡的计算社会科学家,以及可能希望利用计算方法来提高劳动密集型编码的速度和可重复性的定性研究人员。尽管在其他领域也很有用,但我们强调了快速、可重复的方法在更好地理解工作场所歧视经历方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data & Society
Big Data & Society SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
10.90
自引率
10.60%
发文量
59
审稿时长
11 weeks
期刊介绍: Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government. BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices. BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信