{"title":"Lower and upper bounds of condition number for Vandermonde‐wise matrices and method of fundamental solutions using pseudo radial‐lines","authors":"Li-Ping Zhang, Zi-Cai Li, Ming-Gong Lee, Hung-Tsai Huang","doi":"10.1002/nla.2466","DOIUrl":null,"url":null,"abstract":"Consider the method of fundamental solutions (MFS) for 2D Laplace's equation in a bounded simply connected domain S$$ S $$ . In the standard MFS, the source nodes are located on a closed contour outside the domain boundary Γ(=∂S)$$ \\Gamma \\left(=\\partial S\\right) $$ , which is called pseudo‐boundary. For circular, elliptic, and general closed pseudo‐boundaries, analysis and computation have been studied extensively. New locations of source nodes are proposed along two pseudo radial‐lines outside Γ$$ \\Gamma $$ . Numerical results are very encouraging and promising. Since the success of the MFS mainly depends on stability, our efforts are focused on deriving the lower and upper bounds of condition number (Cond). The study finds stability properties of new Vandermonde‐wise matrices on nodes xi∈[a,b]$$ {x}_i\\in \\left[a,b\\right] $$ with 0","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2466","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the method of fundamental solutions (MFS) for 2D Laplace's equation in a bounded simply connected domain S$$ S $$ . In the standard MFS, the source nodes are located on a closed contour outside the domain boundary Γ(=∂S)$$ \Gamma \left(=\partial S\right) $$ , which is called pseudo‐boundary. For circular, elliptic, and general closed pseudo‐boundaries, analysis and computation have been studied extensively. New locations of source nodes are proposed along two pseudo radial‐lines outside Γ$$ \Gamma $$ . Numerical results are very encouraging and promising. Since the success of the MFS mainly depends on stability, our efforts are focused on deriving the lower and upper bounds of condition number (Cond). The study finds stability properties of new Vandermonde‐wise matrices on nodes xi∈[a,b]$$ {x}_i\in \left[a,b\right] $$ with 0
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.