Mixed commutator lengths, wreath products and general ranks

IF 0.4 4区 数学 Q4 MATHEMATICS
Morimichi Kawasaki, M. Kimura, Shuhei Maruyama, Takahiro Matsushita, M. Mimura
{"title":"Mixed commutator lengths, wreath products and general ranks","authors":"Morimichi Kawasaki, M. Kimura, Shuhei Maruyama, Takahiro Matsushita, M. Mimura","doi":"10.2996/kmj46202","DOIUrl":null,"url":null,"abstract":"In the present paper, for a pair $(G,N)$ of a group $G$ and its normal subgroup $N$, we consider the mixed commutator length $\\mathrm{cl}_{G,N}$ on the mixed commutator subgroup $[G,N]$. We focus on the setting of wreath products: $ (G,N)=(\\mathbb{Z}\\wr \\Gamma, \\bigoplus_{\\Gamma}\\mathbb{Z})$. Then we determine mixed commutator lengths in terms of the general rank in the sense of Malcev. As a byproduct, when an abelian group $\\Gamma$ is not locally cyclic, the ordinary commutator length $\\mathrm{cl}_G$ does not coincide with $\\mathrm{cl}_{G,N}$ on $[G,N]$ for the above pair. On the other hand, we prove that if $\\Gamma$ is locally cyclic, then for every pair $(G,N)$ such that $1\\to N\\to G\\to \\Gamma \\to 1$ is exact, $\\mathrm{cl}_{G}$ and $\\mathrm{cl}_{G,N}$ coincide on $[G,N]$. We also study the case of permutational wreath products when the group $\\Gamma$ belongs to a certain class related to surface groups.","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj46202","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In the present paper, for a pair $(G,N)$ of a group $G$ and its normal subgroup $N$, we consider the mixed commutator length $\mathrm{cl}_{G,N}$ on the mixed commutator subgroup $[G,N]$. We focus on the setting of wreath products: $ (G,N)=(\mathbb{Z}\wr \Gamma, \bigoplus_{\Gamma}\mathbb{Z})$. Then we determine mixed commutator lengths in terms of the general rank in the sense of Malcev. As a byproduct, when an abelian group $\Gamma$ is not locally cyclic, the ordinary commutator length $\mathrm{cl}_G$ does not coincide with $\mathrm{cl}_{G,N}$ on $[G,N]$ for the above pair. On the other hand, we prove that if $\Gamma$ is locally cyclic, then for every pair $(G,N)$ such that $1\to N\to G\to \Gamma \to 1$ is exact, $\mathrm{cl}_{G}$ and $\mathrm{cl}_{G,N}$ coincide on $[G,N]$. We also study the case of permutational wreath products when the group $\Gamma$ belongs to a certain class related to surface groups.
混合换向器长度、环形产品和一般等级
在本文中,对于群$G$及其正规子群$N$的对$(G,N)$,我们考虑混合交换子长度$\mathrm{cl}_混合交换子群$[G,N]$上的{G,N}$。我们关注花圈乘积的设置:$(G,N)=(\mathbb{Z}\wr\Gamma,\bigoplus_{\Gamma}\mathbb{Z})$。然后,我们根据Malcev意义上的一般秩来确定混合换向器长度。作为副产品,当阿贝尔群$\Gamma$不是局部循环的时,普通交换子长度$\mathrm{cl}_G$与$\mathrm不一致{cl}_{G,N}$上的$[G,N]$。另一方面,我们证明了如果$\Gamma$是局部循环的,那么对于每对$(G,N)$,使得$1\toN\toG\to\Gamma\to1$是精确的,$\mathrm{cl}_{G} $和$\mathrm{cl}_{G,N}$与$[G,N]$重合。当群$\Gamma$属于与表面群相关的某一类时,我们还研究了置换环积的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信