A Linear CMOS Power Amplifier With Efficiency-Optimized Transformer Matching

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Guixiang Jin, N. Yan, Yue Lin, Hongtao Xu
{"title":"A Linear CMOS Power Amplifier With Efficiency-Optimized Transformer Matching","authors":"Guixiang Jin, N. Yan, Yue Lin, Hongtao Xu","doi":"10.1109/LMWC.2022.3165118","DOIUrl":null,"url":null,"abstract":"A 29.5-GHz power amplifier (PA) with a codesigned transformer-based matching network and a second harmonic control network is presented here. The efficiency of the transformer is well studied, and an accurate analytical solution to a high-efficiency transformer has been proposed. Guiding by it, a high-efficiency 1:2 transformer has been designed. A series <italic>LC</italic> network has been added between the drain and the source as a second harmonic control network. Due to the codesign, the cost of the harmonic control network is negligible. The PA achieves a 3-dB gain bandwidth from 26.9 to 33.2 GHz (21%). The <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {1\\, dB}}$ </tex-math></inline-formula> exceeds 16.5 dBm with power added efficiency (PAE) beyond 27% from 27.5 to 30 GHz. At 29.5 GHz, the proposed PA achieves a <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {1 \\,dB}}$ </tex-math></inline-formula> of 17.4 dBm with 30% PAE<sub>1dB</sub> and a <inline-formula> <tex-math notation=\"LaTeX\">$P_{\\mathrm {sat}}$ </tex-math></inline-formula> of 17.8 dBm with the peak PAE of 30.7%.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1059-1062"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3165118","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

Abstract

A 29.5-GHz power amplifier (PA) with a codesigned transformer-based matching network and a second harmonic control network is presented here. The efficiency of the transformer is well studied, and an accurate analytical solution to a high-efficiency transformer has been proposed. Guiding by it, a high-efficiency 1:2 transformer has been designed. A series LC network has been added between the drain and the source as a second harmonic control network. Due to the codesign, the cost of the harmonic control network is negligible. The PA achieves a 3-dB gain bandwidth from 26.9 to 33.2 GHz (21%). The $P_{\mathrm {1\, dB}}$ exceeds 16.5 dBm with power added efficiency (PAE) beyond 27% from 27.5 to 30 GHz. At 29.5 GHz, the proposed PA achieves a $P_{\mathrm {1 \,dB}}$ of 17.4 dBm with 30% PAE1dB and a $P_{\mathrm {sat}}$ of 17.8 dBm with the peak PAE of 30.7%.
一种优化变压器匹配效率的线性CMOS功率放大器
本文提出了一种29.5GHz功率放大器(PA),它具有基于编码变压器的匹配网络和二次谐波控制网络。对变压器的效率进行了深入的研究,并提出了高效变压器的精确解析解。在此基础上,设计了一种高效的1:2变压器。在漏极和源极之间添加了串联LC网络作为二次谐波控制网络。由于该代码设计,谐波控制网络的成本可以忽略不计。PA实现了从26.9到33.2 GHz(21%)的3dB增益带宽。$P_{\mathrm{1\,dB}}$超过16.5 dBm,功率增加效率(PAE)在27.5到30 GHz范围内超过27%。在29.5GHz下,所提出的PA实现了17.4dBm的$P_{\mathrm{1\,dB}}$,其中PAE1dB为30%,并且实现了17.8dBm的$P_。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Microwave and Wireless Components Letters
IEEE Microwave and Wireless Components Letters 工程技术-工程:电子与电气
自引率
13.30%
发文量
376
审稿时长
3.0 months
期刊介绍: The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信