On resolvability of products

Pub Date : 2022-05-30 DOI:10.4064/fm244-10-2022
I. Juh'asz, L. Soukup, Z. Szentmikl'ossy
{"title":"On resolvability of products","authors":"I. Juh'asz, L. Soukup, Z. Szentmikl'ossy","doi":"10.4064/fm244-10-2022","DOIUrl":null,"url":null,"abstract":". All spaces below are T 0 and crowded (i.e. have no isolated points). For n ≤ ω let M ( n ) be the statement that there are n measurable cardinals and Π( n ) ( Π + ( n ) ) that there are n +1 (0-dimensional T 2 ) spaces whose product is irresolvable. We prove that M (1) , Π(1) and Π + (1) are equiconsistent. For 1 < n < ω we show that CON ( M ( n )) implies CON (Π + ( n )) . Finally, CON ( M ( ω )) implies the consistency of having infinitely many crowded 0-dimensional T 2 -spaces such that the product of any finitely many of them is irresolvable. These settle old problems of Malychin from [11]. Concerning an even older question of Ceder and Pearson in [1], we show that the following are consistent modulo a measurable cardinal: These significantly improve Eckertson","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm244-10-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. All spaces below are T 0 and crowded (i.e. have no isolated points). For n ≤ ω let M ( n ) be the statement that there are n measurable cardinals and Π( n ) ( Π + ( n ) ) that there are n +1 (0-dimensional T 2 ) spaces whose product is irresolvable. We prove that M (1) , Π(1) and Π + (1) are equiconsistent. For 1 < n < ω we show that CON ( M ( n )) implies CON (Π + ( n )) . Finally, CON ( M ( ω )) implies the consistency of having infinitely many crowded 0-dimensional T 2 -spaces such that the product of any finitely many of them is irresolvable. These settle old problems of Malychin from [11]. Concerning an even older question of Ceder and Pearson in [1], we show that the following are consistent modulo a measurable cardinal: These significantly improve Eckertson
分享
查看原文
论产品的可分解性
下面的所有空间都是T0并且拥挤(即没有孤立点)。对于n≤ω,设M(n)为存在n个可测基数和存在n+1(0维T2)空间的乘积不可解的π(n)(π+(n))的陈述。我们证明了M(1)、π(1)和π+(1)是等洽的。对于1<n<ω,我们证明了CON(M(n))隐含着CON(π+(n)。最后,CON(M(ω))暗示了在无限多个拥挤的0维T2-空间中的一致性,使得其中任意无限多个的乘积是不可解的。这些解决了[11]中Malychin的老问题。关于[1]中Ceder和Pearson的一个更古老的问题,我们证明了以下是可测量基数的一致模:这些显著改进了Eckertson
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信