Moving Seshadri constants, and coverings of varieties of maximal Albanese dimension

IF 0.5 4区 数学 Q3 MATHEMATICS
L. D. Cerbo, L. Lombardi
{"title":"Moving Seshadri constants, and coverings of varieties of maximal Albanese dimension","authors":"L. D. Cerbo, L. Lombardi","doi":"10.4310/ajm.2021.v25.n2.a8","DOIUrl":null,"url":null,"abstract":"Let $X$ be a smooth projective complex variety of maximal Albanese dimension, and let $L \\to X$ be a big line bundle. We prove that the moving Seshadri constants of the pull-backs of $L$ to suitable finite abelian etale covers of $X$ are arbitrarily large. As an application, given any integer $k\\geq 1$, there exists an abelian etale cover $p\\colon X' \\to X$ such that the adjoint system $\\big|K_{X'} + p^*L \\big|$ separates $k$-jets away from the augmented base locus of $p^*L$, and the exceptional locus of the pull-back of the Albanese map of $X$ under $p$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n2.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Let $X$ be a smooth projective complex variety of maximal Albanese dimension, and let $L \to X$ be a big line bundle. We prove that the moving Seshadri constants of the pull-backs of $L$ to suitable finite abelian etale covers of $X$ are arbitrarily large. As an application, given any integer $k\geq 1$, there exists an abelian etale cover $p\colon X' \to X$ such that the adjoint system $\big|K_{X'} + p^*L \big|$ separates $k$-jets away from the augmented base locus of $p^*L$, and the exceptional locus of the pull-back of the Albanese map of $X$ under $p$.
移动的Seshadri常数和极大Albanese维数变化的复盖
设$X$为极大艾博年维数的光滑投影复变,设$L \to X$为一个大线束。证明了$L$对$X$的合适有限阿贝列盖的回拉的运动Seshadri常数是任意大的。作为一个应用,给定任意整数$k\geq 1$,存在一个阿贝尔覆盖$p\colon X' \to X$,使得伴随系统$\big|K_{X'} + p^*L \big|$将$k$ -射流与$p^*L$的增广基轨迹和$p$下$X$的艾博地图的回拉的例外轨迹分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信