Estimating the AUC with a graphical lasso method for high-dimensional biomarkers with LOD

Q3 Medicine
Jirui Wang, Yunpeng Zhao, L. Tang
{"title":"Estimating the AUC with a graphical lasso method for high-dimensional biomarkers with LOD","authors":"Jirui Wang, Yunpeng Zhao, L. Tang","doi":"10.1080/24709360.2021.1898731","DOIUrl":null,"url":null,"abstract":"This manuscript estimates the area under the receiver operating characteristic curve (AUC) of combined biomarkers in a high-dimensional setting. We propose a penalization approach to the inference of precision matrices in the presence of the limit of detection. A new version of expectation-maximization algorithm is then proposed for the penalized likelihood, with the use of numerical integration and the graphical lasso method. The estimated precision matrix is then applied to the inference of AUCs. The proposed method outperforms the existing methods in numerical studies. We apply the proposed method to a data set of brain tumor study. The results show a higher accuracy on the estimation of AUC compared with the existing methods.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"5 1","pages":"189 - 206"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2021.1898731","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2021.1898731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript estimates the area under the receiver operating characteristic curve (AUC) of combined biomarkers in a high-dimensional setting. We propose a penalization approach to the inference of precision matrices in the presence of the limit of detection. A new version of expectation-maximization algorithm is then proposed for the penalized likelihood, with the use of numerical integration and the graphical lasso method. The estimated precision matrix is then applied to the inference of AUCs. The proposed method outperforms the existing methods in numerical studies. We apply the proposed method to a data set of brain tumor study. The results show a higher accuracy on the estimation of AUC compared with the existing methods.
用带LOD的高维生物标志物的图形套索法估计AUC
本文估计了在高维环境中组合生物标志物的接收器工作特征曲线(AUC)下的面积。在存在检测极限的情况下,我们提出了一种精度矩阵推理的惩罚方法。利用数值积分法和图形套索法,提出了一种新的惩罚似然期望最大化算法。然后将估计的精度矩阵应用于auc的推理。该方法在数值研究中优于现有方法。我们将所提出的方法应用于脑肿瘤研究数据集。结果表明,与现有方法相比,该方法对AUC的估计具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信