Sierpiński Fractals and the Dimension of Their Laplacian Spectrum

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Pollicott, J. Slipantschuk
{"title":"Sierpiński Fractals and the Dimension of Their Laplacian Spectrum","authors":"M. Pollicott, J. Slipantschuk","doi":"10.3390/mca28030070","DOIUrl":null,"url":null,"abstract":"We establish rigorous estimates for the Hausdorff dimension of the spectra of Laplacians associated with Sierpiński lattices and infinite Sierpiński gaskets and other post-critically finite self-similar sets.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28030070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

We establish rigorous estimates for the Hausdorff dimension of the spectra of Laplacians associated with Sierpiński lattices and infinite Sierpiński gaskets and other post-critically finite self-similar sets.
Sierpiński分形及其拉普拉斯谱的维数
我们建立了与Sierpiński格和无限Sierpiński垫片以及其他后临界有限自相似集相关的拉普拉斯谱的Hausdorff维数的严格估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信