{"title":"Compact moduli of K3 surfaces","authors":"V. Alexeev, P. Engel","doi":"10.4007/annals.2023.198.2.5","DOIUrl":null,"url":null,"abstract":"Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor \"recognizable\" if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $\\overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. \nFor polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.2.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16
Abstract
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor "recognizable" if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $\overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification.
For polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.