Compact moduli of K3 surfaces

IF 5.7 1区 数学 Q1 MATHEMATICS
V. Alexeev, P. Engel
{"title":"Compact moduli of K3 surfaces","authors":"V. Alexeev, P. Engel","doi":"10.4007/annals.2023.198.2.5","DOIUrl":null,"url":null,"abstract":"Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor \"recognizable\" if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $\\overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. \nFor polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.2.5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

Abstract

Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor "recognizable" if its flat limit on Kulikov surfaces is well defined. We prove that the normalization of the stable pair compactification $\overline{F}^R$ for a recognizable divisor is a Looijenga semitoroidal compactification. For polarized K3 surfaces $(X,L)$ of degree $2d$, we show that the sum of rational curves in the linear system $|L|$ is a recognizable divisor, giving a modular semitoroidal compactification of $F_{2d}$ for all $d$.
K3曲面的紧模
设$F$是晶格极化K3表面的模空间。假设在$F$中的一般K3上选择了一个正则有效充分除数$R$。如果它在Kulikov曲面上的平坦极限是明确定义的,我们称这个除数为“可识别的”。我们证明了可识别除数的稳定对紧化$\overline{F}^R$的正规化是Looijenga半双曲紧化。对于阶为$2d$的偏振K3曲面$(X,L)$,我们证明了线性系统$|L|$中有理曲线的和是一个可识别的除数,给出了所有$d$的模半双曲紧致化$F_{2d}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics
Annals of Mathematics 数学-数学
CiteScore
9.10
自引率
2.00%
发文量
29
审稿时长
12 months
期刊介绍: The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信