Exponential tilted likelihood for stationary time series models

IF 0.7 Q3 STATISTICS & PROBABILITY
Xiuzhen Zhang, Yukun Liu, Riquan Zhang, Zhiping Lu
{"title":"Exponential tilted likelihood for stationary time series models","authors":"Xiuzhen Zhang, Yukun Liu, Riquan Zhang, Zhiping Lu","doi":"10.1080/24754269.2021.1978207","DOIUrl":null,"url":null,"abstract":"Depending on the asymptotical independence of periodograms, exponential tilted (ET) likelihood, as an effective nonparametric statistical method, is developed to deal with time series in this paper. Similar to empirical likelihood (EL), it still suffers from two drawbacks: the non-definition problem of the likelihood function and the under-coverage probability of confidence region. To overcome these two problems, we further proposed the adjusted ET (AET) likelihood. With a specific adjustment level, our simulation studies indicate that the AET method achieves a higher-order coverage precision than the unadjusted ET method. In addition, due to the good performance of ET under moment model misspecification [Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. The Annals of Statistics, 35(2), 634–672. https://doi.org/10.1214/009053606000001208], we show that the one-order property of point estimate is preserved for the misspecified spectral estimating equations of the autoregressive coefficient of AR(1). The simulation results illustrate that the point estimates of the ET outperform those of the EL and their hybrid in terms of standard deviation. A real data set is analyzed for illustration purpose.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"6 1","pages":"254 - 263"},"PeriodicalIF":0.7000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1978207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Depending on the asymptotical independence of periodograms, exponential tilted (ET) likelihood, as an effective nonparametric statistical method, is developed to deal with time series in this paper. Similar to empirical likelihood (EL), it still suffers from two drawbacks: the non-definition problem of the likelihood function and the under-coverage probability of confidence region. To overcome these two problems, we further proposed the adjusted ET (AET) likelihood. With a specific adjustment level, our simulation studies indicate that the AET method achieves a higher-order coverage precision than the unadjusted ET method. In addition, due to the good performance of ET under moment model misspecification [Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. The Annals of Statistics, 35(2), 634–672. https://doi.org/10.1214/009053606000001208], we show that the one-order property of point estimate is preserved for the misspecified spectral estimating equations of the autoregressive coefficient of AR(1). The simulation results illustrate that the point estimates of the ET outperform those of the EL and their hybrid in terms of standard deviation. A real data set is analyzed for illustration purpose.
平稳时间序列模型的指数倾斜似然
基于周期图的渐近独立性,本文提出了一种有效的非参数统计方法——指数倾斜似然方法。与经验似然(EL)相似,它仍然存在两个缺点:似然函数的非定义问题和置信区域的概率覆盖不足。为了克服这两个问题,我们进一步提出了调整后ET (AET)似然。在特定平差水平下,我们的模拟研究表明,AET方法比未平差的ET方法获得更高的阶覆盖精度。此外,由于ET在矩模型错误规范下的良好性能[Schennach, s.m.(2007)]。具有指数倾斜经验似然的点估计。统计年鉴,35(2),634-672。https://doi.org/10.1214/009053606000001208],我们证明了对于AR(1)的自回归系数的错误谱估计方程,点估计的一阶性质是保持的。仿真结果表明,在标准差方面,ET的点估计优于EL及其混合估计。为了说明目的,分析了一个真实的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信