Lattice Theory for Finite Dimensional Hilbert Space with Variables in Zd

S. O. Oladejo, A. D. Adeshola, A. D. Adeniyi
{"title":"Lattice Theory for Finite Dimensional Hilbert Space with Variables in Zd","authors":"S. O. Oladejo, A. D. Adeshola, A. D. Adeniyi","doi":"10.4236/JQIS.2019.92006","DOIUrl":null,"url":null,"abstract":"In this work, join and meet algebraic structure which exists in non-near-linear finite geometry are discussed. Lines in non-near-linear finite geometry  were expressed as products of lines in near-linear finite geometry  (where p is a prime). An existence of lattice between any pair of near-linear finite geometry  of  is confirmed. For q|d, a one-to-one correspondence between the set of subgeometry  of  and finite geometry  from the subsets of the set {D(d)} of divisors of d (where each divisor represents a finite geometry) and set of subsystems {∏(q)} (with variables in Zq) of a finite quantum system ∏(d) with variables in Zd and a finite system from the subsets of the set of divisors of d is established.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2019.92006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, join and meet algebraic structure which exists in non-near-linear finite geometry are discussed. Lines in non-near-linear finite geometry  were expressed as products of lines in near-linear finite geometry  (where p is a prime). An existence of lattice between any pair of near-linear finite geometry  of  is confirmed. For q|d, a one-to-one correspondence between the set of subgeometry  of  and finite geometry  from the subsets of the set {D(d)} of divisors of d (where each divisor represents a finite geometry) and set of subsystems {∏(q)} (with variables in Zq) of a finite quantum system ∏(d) with variables in Zd and a finite system from the subsets of the set of divisors of d is established.
Zd中有变量的有限维Hilbert空间的格理论
本文讨论了非非线性有限几何中存在的连接与满足代数结构。非近线性有限几何中的直线表示为近线性有限几何中直线的乘积(其中p为素数)。证明了任意近线性有限几何对之间的格的存在性。对于q|d,建立了d的除数集合{d (d)}的子集与有限几何的子几何集合(其中每个除数表示一个有限几何)和有限量子系统∏(d)的变量为Zd的子系统集合{∏(q)}(变量为Zq)与d的除数集合的子集的有限系统之间的一一对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信