On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs

IF 0.7 4区 数学 Q2 Mathematics
Xiuwen Yang, Xiaogang Liu, Ligong Wang
{"title":"On the sum of the k largest absolute values of Laplacian eigenvalues of digraphs","authors":"Xiuwen Yang, Xiaogang Liu, Ligong Wang","doi":"10.13001/ela.2023.7503","DOIUrl":null,"url":null,"abstract":"Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\\mathbb{C}_n^+$-free if it contains no $C_{\\ell}^+$ as a subdigraph for any $2\\leq \\ell \\leq n-1$. In this paper, we present lower bounds of $S_n(G)$ of digraphs of order $n$. We provide the exact values of $S_k(G)$ of directed cycles and $\\mathbb{C}_n^+$-free unicyclic digraphs. Moreover, we obtain upper bounds of $S_k(G)$ of $\\mathbb{C}_n^+$-free digraphs which have vertex-disjoint directed cycles.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7503","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $L(G)$ be the Laplacian matrix of a digraph $G$ and $S_k(G)$ be the sum of the $k$ largest absolute values of Laplacian eigenvalues of $G$. Let $C_n^+$ be a digraph with $n+1$ vertices obtained from the directed cycle $C_n$ by attaching a pendant arc whose tail is on $C_n$. A digraph is $\mathbb{C}_n^+$-free if it contains no $C_{\ell}^+$ as a subdigraph for any $2\leq \ell \leq n-1$. In this paper, we present lower bounds of $S_n(G)$ of digraphs of order $n$. We provide the exact values of $S_k(G)$ of directed cycles and $\mathbb{C}_n^+$-free unicyclic digraphs. Moreover, we obtain upper bounds of $S_k(G)$ of $\mathbb{C}_n^+$-free digraphs which have vertex-disjoint directed cycles.
有向图的拉普拉斯特征值的k个最大绝对值之和
设$L(G)$为有向图$G$的拉普拉斯矩阵,$S_k(G)$为$G$的拉普拉斯特征值的$k$最大绝对值之和。设$C_n^+$为有向图,其顶点为$n+1$,由有向循环$C_n$通过附加一条尾在$C_n$上的垂弧得到。如果有向图不包含$C_{\ell}^+$作为任何$2\leq \ell \leq n-1$的子向图,则该有向图是$\mathbb{C}_n^+$自由的。本文给出了$n$阶有向图$S_n(G)$的下界。给出了有向环的$S_k(G)$和无单环有向图的$\mathbb{C}_n^+$的精确值。此外,我们还得到了具有顶点不相交有向环的$\mathbb{C}_n^+$自由有向图的$S_k(G)$的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信