M-hypercyclicity of C0-semigroup and Svep of its generator

IF 0.3 Q4 MATHEMATICS
A. Toukmati
{"title":"M-hypercyclicity of C0-semigroup and Svep of its generator","authors":"A. Toukmati","doi":"10.1515/conop-2020-0122","DOIUrl":null,"url":null,"abstract":"Abstract Let 𝒯 = (Tt)t≥0 be a C0-semigroup on a separable infinite dimensional Banach space X, with generator A. In this paper, we study the relationship between the single valued extension property of generator A, and the M-hypercyclicity of the C0-semigroup. Specifically, we prove that if A does not have the single valued extension property at λ ∈ iℝ, then there exists a closed subspace M of X, such that the C0-semigroup 𝒯 is M-hypercyclic. As a corollary, we get certain conditions of the generator A, for the C0-semigroup to be M-hypercyclic.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let 𝒯 = (Tt)t≥0 be a C0-semigroup on a separable infinite dimensional Banach space X, with generator A. In this paper, we study the relationship between the single valued extension property of generator A, and the M-hypercyclicity of the C0-semigroup. Specifically, we prove that if A does not have the single valued extension property at λ ∈ iℝ, then there exists a closed subspace M of X, such that the C0-semigroup 𝒯 is M-hypercyclic. As a corollary, we get certain conditions of the generator A, for the C0-semigroup to be M-hypercyclic.
c0 -半群的m -超旋性及其发生器的Svep
摘要:设∞维Banach空间X上具有生成子a的c0 -半群(t = (Tt)t≥0)。本文研究了生成子a的单值可拓性与c0 -半群的m -超环性之间的关系。具体地,我们证明了如果A在λ∈i∈上不具有单值可拓性,则存在X的闭子空间M,使得c0 -半群∈是M-超循环的。作为推论,我们得到了c -半群为m -超环的生成子a的若干条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信