{"title":"Asymptotic results on tail moment and tail central moment for dependent risks","authors":"Jinzhu Li","doi":"10.1017/apr.2022.74","DOIUrl":null,"url":null,"abstract":"\n In this paper, we consider a financial or insurance system with a finite number of individual risks described by real-valued random variables. We focus on two kinds of risk measures, referred to as the tail moment (TM) and the tail central moment (TCM), which are defined as the conditional moment and conditional central moment of some individual risk in the event of system crisis. The first-order TM and the second-order TCM coincide with the popular risk measures called the marginal expected shortfall and the tail variance, respectively. We derive asymptotic expressions for the TM and TCM with any positive integer orders, when the individual risks are pairwise asymptotically independent and have distributions from certain classes that contain both light-tailed and heavy-tailed distributions. The formulas obtained possess concise forms unrelated to dependence structures, and hence enable us to estimate the TM and TCM efficiently. To demonstrate the wide application of our results, we revisit some issues related to premium principles and optimal capital allocation from the asymptotic point of view. We also give a numerical study on the relative errors of the asymptotic results obtained, under some specific scenarios when there are two individual risks in the system. The corresponding asymptotic properties of the degenerate univariate versions of the TM and TCM are discussed separately in an appendix at the end of the paper.","PeriodicalId":53160,"journal":{"name":"Advances in Applied Probability","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.74","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider a financial or insurance system with a finite number of individual risks described by real-valued random variables. We focus on two kinds of risk measures, referred to as the tail moment (TM) and the tail central moment (TCM), which are defined as the conditional moment and conditional central moment of some individual risk in the event of system crisis. The first-order TM and the second-order TCM coincide with the popular risk measures called the marginal expected shortfall and the tail variance, respectively. We derive asymptotic expressions for the TM and TCM with any positive integer orders, when the individual risks are pairwise asymptotically independent and have distributions from certain classes that contain both light-tailed and heavy-tailed distributions. The formulas obtained possess concise forms unrelated to dependence structures, and hence enable us to estimate the TM and TCM efficiently. To demonstrate the wide application of our results, we revisit some issues related to premium principles and optimal capital allocation from the asymptotic point of view. We also give a numerical study on the relative errors of the asymptotic results obtained, under some specific scenarios when there are two individual risks in the system. The corresponding asymptotic properties of the degenerate univariate versions of the TM and TCM are discussed separately in an appendix at the end of the paper.
期刊介绍:
The Advances in Applied Probability has been published by the Applied Probability Trust for over four decades, and is a companion publication to the Journal of Applied Probability. It contains mathematical and scientific papers of interest to applied probabilists, with emphasis on applications in a broad spectrum of disciplines, including the biosciences, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.