Bayesian and non-Bayesian Estimation in log-logistic Lifetime model using Adaptive Progressively Censored Data

IF 0.1 Q4 AGRICULTURE, MULTIDISCIPLINARY
Anita Kumari, K.Nagendra Kumar
{"title":"Bayesian and non-Bayesian Estimation in log-logistic Lifetime model using Adaptive Progressively Censored Data","authors":"Anita Kumari, K.Nagendra Kumar","doi":"10.59467/ijass.2023.19.17","DOIUrl":null,"url":null,"abstract":": This article includes the problem of Bayesian and non-Bayesian estimation of parameters of the log-logistic lifetime model under adaptive progressive type-II censoring. The classical and Bayesian estimation techniques are used to estimate the unknown parameters of the log-logistic lifetime model. The maximum product spacing and maximum likelihood estimation techniques are used to obtain the point estimates of the unknown parameters with their corresponding asymptotic confidence interval as the interval estimates of the parameter. The Bayes estimates of the parameter are calculated using MCMC techniques with their corresponding highest posterior density credible intervals. The comparison of various estimates obtained in the study is made by carrying out a simulation study. The illustration of the study is shown by analyzing a real-life problem. Finally, conclusions are made based on the above study.","PeriodicalId":50344,"journal":{"name":"International Journal of Agricultural and Statistical Sciences","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59467/ijass.2023.19.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

: This article includes the problem of Bayesian and non-Bayesian estimation of parameters of the log-logistic lifetime model under adaptive progressive type-II censoring. The classical and Bayesian estimation techniques are used to estimate the unknown parameters of the log-logistic lifetime model. The maximum product spacing and maximum likelihood estimation techniques are used to obtain the point estimates of the unknown parameters with their corresponding asymptotic confidence interval as the interval estimates of the parameter. The Bayes estimates of the parameter are calculated using MCMC techniques with their corresponding highest posterior density credible intervals. The comparison of various estimates obtained in the study is made by carrying out a simulation study. The illustration of the study is shown by analyzing a real-life problem. Finally, conclusions are made based on the above study.
基于自适应渐进式截尾数据的logistic寿命模型贝叶斯和非贝叶斯估计
:本文包括在自适应渐进II型截尾下对数逻辑寿命模型参数的贝叶斯和非贝叶斯估计问题。使用经典和贝叶斯估计技术来估计对数逻辑寿命模型的未知参数。最大乘积间距和最大似然估计技术用于获得未知参数的点估计,其相应的渐近置信区间作为参数的区间估计。参数的贝叶斯估计是使用MCMC技术计算的,具有相应的最高后验密度可信区间。通过进行模拟研究,对研究中获得的各种估计值进行了比较。通过分析一个现实生活中的问题来说明这项研究。最后,在以上研究的基础上得出结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
66.70%
发文量
4
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信