A method for detecting objects in dense scenes

IF 1.1 Q3 COMPUTER SCIENCE, THEORY & METHODS
Chuanyun Xu, Yueping Zheng, Yang Zhang, Gang Li, Ying Wang
{"title":"A method for detecting objects in dense scenes","authors":"Chuanyun Xu, Yueping Zheng, Yang Zhang, Gang Li, Ying Wang","doi":"10.1515/comp-2022-0231","DOIUrl":null,"url":null,"abstract":"Abstract Recent object detectors have achieved excellent performance in accuracy and speed. Even with such impressive results, the most advanced detectors are challenging in dense scenes. In this article, we analyze and find the reasons for the decrease in detection accuracy in dense scenes. We started our work in terms of region proposal and location loss. We found that low-quality proposal regions during the training process are the main factors affecting detection accuracy. To prove our research, we established and trained a dense detection model based on Cascade R-CNN. The model achieves an accuracy of mAP 0.413 on the SKU-110K sub-dataset. Our results show that improving the quality of recommended regions can effectively improve the detection accuracy in dense scenes.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"12 1","pages":"75 - 82"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Recent object detectors have achieved excellent performance in accuracy and speed. Even with such impressive results, the most advanced detectors are challenging in dense scenes. In this article, we analyze and find the reasons for the decrease in detection accuracy in dense scenes. We started our work in terms of region proposal and location loss. We found that low-quality proposal regions during the training process are the main factors affecting detection accuracy. To prove our research, we established and trained a dense detection model based on Cascade R-CNN. The model achieves an accuracy of mAP 0.413 on the SKU-110K sub-dataset. Our results show that improving the quality of recommended regions can effectively improve the detection accuracy in dense scenes.
一种在密集场景中检测物体的方法
摘要近年来,物体探测器在精度和速度方面都取得了优异的性能。即使有如此令人印象深刻的结果,最先进的探测器在密集的场景中也是具有挑战性的。在这篇文章中,我们分析并找出了在密集场景中检测精度下降的原因。我们从区域建议和位置损失开始了我们的工作。我们发现,训练过程中的低质量建议区域是影响检测准确性的主要因素。为了证明我们的研究,我们建立并训练了一个基于级联R-CNN的密集检测模型。该模型在SKU-110K子数据集上实现了mAP 0.413的精度。我们的结果表明,提高推荐区域的质量可以有效地提高密集场景中的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Computer Science
Open Computer Science COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.00
自引率
0.00%
发文量
24
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信