THE INVESTIGATION OF DYNAMIC EFFECTS UNDER MICROSCALE PULSE LOAD

Q3 Engineering
N. Yakovenko, A. Bondarchuk, O. Kovalchuk
{"title":"THE INVESTIGATION OF DYNAMIC EFFECTS UNDER MICROSCALE PULSE LOAD","authors":"N. Yakovenko, A. Bondarchuk, O. Kovalchuk","doi":"10.34229/1028-0979-2021-4-6","DOIUrl":null,"url":null,"abstract":"Axisymmetric problem of heat pulse irradiation of a cylindrical solid is considered. Nonlinear behavior of the material is described by the generalized Bodner-Partom model of flow. The nature of generalization lies in applying the rule of mixtures for the determination of parameters of the model responsible for yield point and ultimate strength. The considered model enables one to estimate the residual stress-strain state more exactly. During subsequent in-service loading of cylindrical solids, this state strongly affects the fatigue resistance of elements. The problem is solved by the time step integration method, iterative method, and finite element method. In each time step, we realize a double iteration process. The first is connected with the integration of the system of nonlinear equations of flow, the second with the solution of equations of motion and heat conduction. The calculations are performed on a grid FEM, especially in the region of irradiation, for the correct modeling of thermomechanical behavior of the material. The grid parameters are chosen with the help of the criterion of practical convergence of the solutions. The investigation of the stress-strain state of an inelastic material with regard for the dependence of parameters of the flow model on the phase composition of a material is carried out by using of numerical simulation. The main result is the following: qualitative and quantitative effects of phase composition influence on inelastic characteristics are established, namely change of tensile residual stresses on compression. The results obtained in the work can be used in calculations of parameters of surface hardening technologies.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-4-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Axisymmetric problem of heat pulse irradiation of a cylindrical solid is considered. Nonlinear behavior of the material is described by the generalized Bodner-Partom model of flow. The nature of generalization lies in applying the rule of mixtures for the determination of parameters of the model responsible for yield point and ultimate strength. The considered model enables one to estimate the residual stress-strain state more exactly. During subsequent in-service loading of cylindrical solids, this state strongly affects the fatigue resistance of elements. The problem is solved by the time step integration method, iterative method, and finite element method. In each time step, we realize a double iteration process. The first is connected with the integration of the system of nonlinear equations of flow, the second with the solution of equations of motion and heat conduction. The calculations are performed on a grid FEM, especially in the region of irradiation, for the correct modeling of thermomechanical behavior of the material. The grid parameters are chosen with the help of the criterion of practical convergence of the solutions. The investigation of the stress-strain state of an inelastic material with regard for the dependence of parameters of the flow model on the phase composition of a material is carried out by using of numerical simulation. The main result is the following: qualitative and quantitative effects of phase composition influence on inelastic characteristics are established, namely change of tensile residual stresses on compression. The results obtained in the work can be used in calculations of parameters of surface hardening technologies.
微尺度脉冲载荷下的动力学效应研究
研究了热脉冲辐照圆柱形固体的轴对称问题。用广义Bodner-Partom流动模型描述了材料的非线性行为。泛化的本质在于应用混合规则来确定负责屈服点和极限强度的模型参数。所考虑的模型使人们能够更准确地估计残余应力-应变状态。在随后的圆柱形固体服役载荷中,这种状态强烈影响元件的抗疲劳性。采用时间步长积分法、迭代法和有限元法求解。在每个时间步中,我们实现了一个双重迭代过程。前者与非线性流动方程系统的积分有关,后者与运动方程和热传导方程的解有关。为了正确地模拟材料的热力学行为,在网格有限元法上进行了计算,特别是在辐照区域。根据解的实际收敛性准则选择网格参数。采用数值模拟方法研究了非弹性材料的应力-应变状态,考虑了流动模型参数与材料相组成的关系。主要结果如下:建立了相组成对非弹性特性影响的定性和定量效应,即拉伸残余应力对压缩的变化。所得结果可用于表面硬化工艺参数的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信