Development of UCN sources at PNPI

IF 1 Q3 NUCLEAR SCIENCE & TECHNOLOGY
A. Serebrov, Vitaliy Lyamkin
{"title":"Development of UCN sources at PNPI","authors":"A. Serebrov, Vitaliy Lyamkin","doi":"10.3233/jnr-220007","DOIUrl":null,"url":null,"abstract":"This article reviews the development of various sources for ultracold neutrons (UCNs) at the Petersburg Nuclear Physics Institute (PNPI). For 45 years, PNPI has proposed and manufactured cryogenic devices for neutron conversion to low energies. Based on beryllium, hydrogen and deuterium, they can be operated in the intense radiation fields near the core of a nuclear reactor. A more recently launched UCN source development utilizes superfluid helium (He-II) as conversion medium. Initially proposed and designed for PNPI’s old WWR-M reactor, the project has been reshaped to equip the institute’s PIK reactor with a modern UCN source of this type. The projected UCN density in the closed source chamber is 2.2 × 103 cm−3, which, as calculations of neutron transport show, will provide 200 cm−3 in the chambers of a neutron EDM spectrometer connected to the source by a UCN guide. Experiments at PNPI with a full-scale UCN source model have demonstrated that a heat load of 60 W can be removed from the He-II in the converter at a temperature of 1.37 K. This fact confirms the practical possibility to implement low-temperature converters under “in-pile” conditions with large heat inflows. The review concludes with a presentation of various proposed options for a He-II based UCN source at the European Spallation Source.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

This article reviews the development of various sources for ultracold neutrons (UCNs) at the Petersburg Nuclear Physics Institute (PNPI). For 45 years, PNPI has proposed and manufactured cryogenic devices for neutron conversion to low energies. Based on beryllium, hydrogen and deuterium, they can be operated in the intense radiation fields near the core of a nuclear reactor. A more recently launched UCN source development utilizes superfluid helium (He-II) as conversion medium. Initially proposed and designed for PNPI’s old WWR-M reactor, the project has been reshaped to equip the institute’s PIK reactor with a modern UCN source of this type. The projected UCN density in the closed source chamber is 2.2 × 103 cm−3, which, as calculations of neutron transport show, will provide 200 cm−3 in the chambers of a neutron EDM spectrometer connected to the source by a UCN guide. Experiments at PNPI with a full-scale UCN source model have demonstrated that a heat load of 60 W can be removed from the He-II in the converter at a temperature of 1.37 K. This fact confirms the practical possibility to implement low-temperature converters under “in-pile” conditions with large heat inflows. The review concludes with a presentation of various proposed options for a He-II based UCN source at the European Spallation Source.
PNPI的UCN源开发
本文综述了彼得堡核物理研究所(PNPI)超冷中子(UCN)各种来源的发展。45年来,PNPI提出并制造了用于中子转化为低能量的低温装置。基于铍、氢和氘,它们可以在核反应堆堆芯附近的强辐射场中运行。最近启动的UCN源开发利用超流氦(He II)作为转换介质。该项目最初是为PNPI的旧WWR-M反应堆提出和设计的,现在已经进行了改造,为该研究所的PIK反应堆配备了这种类型的现代UCN源。封闭源室内的预计UCN密度为2.2×103 cm−3,正如中子输运计算所示,这将在通过UCN导管连接到源的中子EDM光谱仪的室内提供200 cm−3。使用全尺寸UCN源模型在PNPI进行的实验表明,在1.37 K的温度下,可以从转换器中的He II中去除60 W的热负荷。这一事实证实了在具有大量热流入的“堆内”条件下实施低温转换器的实际可能性。审查结束时,在欧洲散裂震源介绍了基于He II的UCN震源的各种拟议方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neutron Research
Journal of Neutron Research NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
2.30
自引率
9.10%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信