Pauline Priadka, Glen S. Brown, B. Patterson, F. Mallory
{"title":"Sex and age-specific differences in the performance of harvest indices as proxies of population abundance under selective harvesting","authors":"Pauline Priadka, Glen S. Brown, B. Patterson, F. Mallory","doi":"10.2981/wlb.00629","DOIUrl":null,"url":null,"abstract":"Harvest indices are commonly used as proxies to direct population monitoring but sources of variability, including harvest effort and factors influencing detectability of animals to hunters, are rarely considered. Harvest indices may further be influenced by selective harvesting with regulatory differences in harvest effort across sex and age-classes. To evaluate how sex and age-specific harvests vary as proxies of abundance under selective harvesting, we assessed harvest–abundance relationships (H–A) for moose Alces alces bulls, cows and calves across 58 wildlife management units (WMUs) in Ontario, Canada. Selective harvesting in our study area resulted in more regulated harvest of bulls and cows than calves. We therefore predicted more proportional H–A for calves than bulls and cows, with variability in H–A influenced by harvest effort, in addition to weather and landscape features that may influence moose detectability to hunters. In contrast to our expectation, we found that H–A was more proportional for adult moose than calves. Additionally, we found harvest was proportionally highest for bulls, despite greater harvest effort for calves. A positive effect of harvest effort on harvest as moose abundance increased helped to explain proportional H–A for adult moose. However, the effect of harvest effort on harvest was curvilinear at high effort levels, indicating that harvest will underestimate abundance when effort by hunters is high. Additionally, we found evidence of lower harvest in relation to abundance in WMUs with higher levels of recent disturbance from wildfire burns and clear-cuts. We demonstrate that the relationship between harvest and abundance can vary across selectively harvested sex and age-classes, while variability in H–A can be attributed to spatial variability in harvest effort and the landscape. We caution that sources of variability in H–A, both across and among sex and age-classes, should not be ignored when using harvest indices, especially for selectively harvested species.","PeriodicalId":54405,"journal":{"name":"Wildlife Biology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wildlife Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2981/wlb.00629","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Harvest indices are commonly used as proxies to direct population monitoring but sources of variability, including harvest effort and factors influencing detectability of animals to hunters, are rarely considered. Harvest indices may further be influenced by selective harvesting with regulatory differences in harvest effort across sex and age-classes. To evaluate how sex and age-specific harvests vary as proxies of abundance under selective harvesting, we assessed harvest–abundance relationships (H–A) for moose Alces alces bulls, cows and calves across 58 wildlife management units (WMUs) in Ontario, Canada. Selective harvesting in our study area resulted in more regulated harvest of bulls and cows than calves. We therefore predicted more proportional H–A for calves than bulls and cows, with variability in H–A influenced by harvest effort, in addition to weather and landscape features that may influence moose detectability to hunters. In contrast to our expectation, we found that H–A was more proportional for adult moose than calves. Additionally, we found harvest was proportionally highest for bulls, despite greater harvest effort for calves. A positive effect of harvest effort on harvest as moose abundance increased helped to explain proportional H–A for adult moose. However, the effect of harvest effort on harvest was curvilinear at high effort levels, indicating that harvest will underestimate abundance when effort by hunters is high. Additionally, we found evidence of lower harvest in relation to abundance in WMUs with higher levels of recent disturbance from wildfire burns and clear-cuts. We demonstrate that the relationship between harvest and abundance can vary across selectively harvested sex and age-classes, while variability in H–A can be attributed to spatial variability in harvest effort and the landscape. We caution that sources of variability in H–A, both across and among sex and age-classes, should not be ignored when using harvest indices, especially for selectively harvested species.
期刊介绍:
WILDLIFE BIOLOGY is a high-quality scientific forum directing concise and up-to-date information to scientists, administrators, wildlife managers and conservationists. The journal encourages and welcomes original papers, short communications and reviews written in English from throughout the world. The journal accepts theoretical, empirical, and practical articles of high standard from all areas of wildlife science with the primary task of creating the scientific basis for the enhancement of wildlife management practices. Our concept of ''wildlife'' mainly includes mammal and bird species, but studies on other species or phenomena relevant to wildlife management are also of great interest. We adopt a broad concept of wildlife management, including all structures and actions with the purpose of conservation, sustainable use, and/or control of wildlife and its habitats, in order to safeguard sustainable relationships between wildlife and other human interests.