Surface reconstruction of halide perovskite-zeolite composites to activate lattice oxygen for water electrolysis

Xiangrong Ren, Yiyue Zhai, Bolun Wang, S. Liu
{"title":"Surface reconstruction of halide perovskite-zeolite composites to activate lattice oxygen for water electrolysis","authors":"Xiangrong Ren, Yiyue Zhai, Bolun Wang, S. Liu","doi":"10.1360/tb-2023-0570","DOIUrl":null,"url":null,"abstract":"可再生能源驱动的电催化分解水制氢是实现氢经济的 有效途径,对实现双碳目标具有重要意义.然而,位于阳极 的析氧半反应(OER)涉及多步的四电子转移, 动力学缓慢, 较 高过电位的存在严重制约了电解水制氢的能量转换效率. 目 前, 性能优异的阳极材料主要以贵金属基IrO2和RuO2催化剂 为主, 因此, 研发具有高催化活性与优良稳定性的非贵金属 催化剂是电解水制氢大规模应用面临的长期挑战. 近年 来, 钙钛矿氧化物由于其组分可调、高的电子/离子电导率、 良好的催化活性、低的材料成本等优点引起了广泛关注. 2017年, 麻省理工学院邵阳教授课题组基于钙钛矿氧化物 SrCoO3−δ发现了晶格氧参与OER的新机制, 即晶格氧的氧化 机制(lattice-oxygen oxidation mechanism, LOM). LOM因涉 及直接的O−O耦合, 打破了传统吸附演化机制(adsorbate evolution mechanism, AEM)中HO*和HOO*的依赖关系, 使OER 各基元步的反应吉布斯自由能更接近理论值, 从而表现出更 高的催化活性. 由于LOM涉及了晶格氧的逸出, 催化剂表面 不可避免地形成了一定含量的氧空位(VOs). 有意思的是, 最 近研究表明, 氧空位在调节催化剂电子结构、驱动LOM方面 发挥着关键作用. 尽管目前基于离子掺杂、热处理的氧缺 陷调控已被证明是激活LOM的有效策略, 但未从根本上改变 金属-氧键的刚性晶格, 导致了催化剂较高的VOs形成能和 OER吉布斯自由能变. 相比于钙钛矿氧化物, 金属卤化物钙钛矿由于组分元素 间的弱键合性质, 表现出软晶格特性, 为触发LOM提供了更 大的结构灵活性. 鉴于卤化钙钛矿在水及极性溶剂中较差的 稳定性, 研究者通常采用各种基质(如有机聚合物、金属/非 金属氧化物等)作外包覆将卤化物钙钛矿纳米晶与水分、氧 气等隔离以提高钙钛矿的水稳定性. 然而, 考虑到工业水 电解制氢的大电流密度和催化剂长期耐久性的要求, 复合材 料中卤化物钙钛矿水稳定性的不足以及缺乏暴露的催化活 性位点是其电催化水氧化的主要障碍. 分子筛是一类无机晶体材料, 具有有序的多孔结构, 与 其他基质相比, 有比表面积大、孔结构规则、耐热性和水热 稳定性好、成本低廉等优点. 此外, 分子筛骨架拓扑和孔结 构的多样性使它可以作为主体基质负载和稳定客体物种, 如 单原子、纳米团簇和金属纳米颗粒等; 其与客体丰富的相互 作用表现出不同于原始分子筛或游离客体物种的物理化学 性质. 最近, 我们报道了金属卤化物钙钛矿-分子筛复合 材料MAPbX3@AlPO-5(MA是甲胺离子, X代表卤素离子, AlPO-5是磷酸铝分子筛)用于高效、可持续的碱性OER反应, 结合先进的实验表征和理论计算阐明了MAPbX3@AlPO-5水 氧化中的表面重构过程, 揭示了软晶格卤化物钙钛矿在形成 VOs、激活LOM的重要作用, 该研究成果发表于Advanced Materials. 采用简单的浸渍退火结合的方法制备了一系列 MAPbBrxI3−x@AlPO-5(x = 0, 1, 2, 3)复合材料. 掠入射X射线 衍射(GIXRD)验证了复合材料的物相组成和晶体结构; 透射 电子显微镜(TEM)图片表明MAPbBr3纳米晶的平均粒径尺寸","PeriodicalId":10230,"journal":{"name":"Chinese Science Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Science Bulletin","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1360/tb-2023-0570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

可再生能源驱动的电催化分解水制氢是实现氢经济的 有效途径,对实现双碳目标具有重要意义.然而,位于阳极 的析氧半反应(OER)涉及多步的四电子转移, 动力学缓慢, 较 高过电位的存在严重制约了电解水制氢的能量转换效率. 目 前, 性能优异的阳极材料主要以贵金属基IrO2和RuO2催化剂 为主, 因此, 研发具有高催化活性与优良稳定性的非贵金属 催化剂是电解水制氢大规模应用面临的长期挑战. 近年 来, 钙钛矿氧化物由于其组分可调、高的电子/离子电导率、 良好的催化活性、低的材料成本等优点引起了广泛关注. 2017年, 麻省理工学院邵阳教授课题组基于钙钛矿氧化物 SrCoO3−δ发现了晶格氧参与OER的新机制, 即晶格氧的氧化 机制(lattice-oxygen oxidation mechanism, LOM). LOM因涉 及直接的O−O耦合, 打破了传统吸附演化机制(adsorbate evolution mechanism, AEM)中HO*和HOO*的依赖关系, 使OER 各基元步的反应吉布斯自由能更接近理论值, 从而表现出更 高的催化活性. 由于LOM涉及了晶格氧的逸出, 催化剂表面 不可避免地形成了一定含量的氧空位(VOs). 有意思的是, 最 近研究表明, 氧空位在调节催化剂电子结构、驱动LOM方面 发挥着关键作用. 尽管目前基于离子掺杂、热处理的氧缺 陷调控已被证明是激活LOM的有效策略, 但未从根本上改变 金属-氧键的刚性晶格, 导致了催化剂较高的VOs形成能和 OER吉布斯自由能变. 相比于钙钛矿氧化物, 金属卤化物钙钛矿由于组分元素 间的弱键合性质, 表现出软晶格特性, 为触发LOM提供了更 大的结构灵活性. 鉴于卤化钙钛矿在水及极性溶剂中较差的 稳定性, 研究者通常采用各种基质(如有机聚合物、金属/非 金属氧化物等)作外包覆将卤化物钙钛矿纳米晶与水分、氧 气等隔离以提高钙钛矿的水稳定性. 然而, 考虑到工业水 电解制氢的大电流密度和催化剂长期耐久性的要求, 复合材 料中卤化物钙钛矿水稳定性的不足以及缺乏暴露的催化活 性位点是其电催化水氧化的主要障碍. 分子筛是一类无机晶体材料, 具有有序的多孔结构, 与 其他基质相比, 有比表面积大、孔结构规则、耐热性和水热 稳定性好、成本低廉等优点. 此外, 分子筛骨架拓扑和孔结 构的多样性使它可以作为主体基质负载和稳定客体物种, 如 单原子、纳米团簇和金属纳米颗粒等; 其与客体丰富的相互 作用表现出不同于原始分子筛或游离客体物种的物理化学 性质. 最近, 我们报道了金属卤化物钙钛矿-分子筛复合 材料MAPbX3@AlPO-5(MA是甲胺离子, X代表卤素离子, AlPO-5是磷酸铝分子筛)用于高效、可持续的碱性OER反应, 结合先进的实验表征和理论计算阐明了MAPbX3@AlPO-5水 氧化中的表面重构过程, 揭示了软晶格卤化物钙钛矿在形成 VOs、激活LOM的重要作用, 该研究成果发表于Advanced Materials. 采用简单的浸渍退火结合的方法制备了一系列 MAPbBrxI3−x@AlPO-5(x = 0, 1, 2, 3)复合材料. 掠入射X射线 衍射(GIXRD)验证了复合材料的物相组成和晶体结构; 透射 电子显微镜(TEM)图片表明MAPbBr3纳米晶的平均粒径尺寸
卤化物钙钛矿-沸石复合材料的表面重建,以激活用于水电解的晶格氧
The electrocatalytic decomposition of water to produce hydrogen driven by renewable energy is an effective way to achieve hydrogen economy and is of great significance for achieving the dual carbon goal. However, the oxygen evolution half reaction (OER) located at the anode involves multi-step four electron transfer, slow kinetics, and the presence of high overpotential seriously restricts the energy conversion efficiency of electrolytic water to produce hydrogen At present, high-performance anode materials mainly rely on precious metal based IrO2 and RuO2 catalysts. Therefore, the development of non precious metal catalysts with high catalytic activity and excellent stability is a long-term challenge for the large-scale application of hydrogen production by electrolysis of water In recent years, perovskite oxides have attracted widespread attention due to their adjustable composition, high electron/ion conductivity, good catalytic activity, and low material cost In 2017, Professor Shaoyang's research group at the Massachusetts Institute of Technology based on perovskite oxide SrCoO3 − δ A new mechanism has been discovered for the involvement of lattice oxygen in OER, namely the lattice oxygen oxidation mechanism (LOM) LOM, due to its involvement in direct O-O coupling, breaks the dependence of HO * and HOO * in traditional adsorption evolution mechanisms (AEM), bringing the Gibbs free energy of each OER step closer to the theoretical value, thus exhibiting higher catalytic activity Due to the involvement of lattice oxygen escape in LOM, a certain amount of oxygen vacancies (VOs) are inevitably formed on the catalyst surface Interestingly, recent studies have shown that oxygen vacancies play a crucial role in regulating the electronic structure of catalysts and driving LOM Although oxygen defect regulation based on ion doping and heat treatment has been proven to be an effective strategy for activating LOM, it has not fundamentally changed the rigid lattice of metal oxygen bonds, resulting in higher VOs formation energy and OER Gibbs free energy changes in the catalyst Compared to perovskite oxides, metal halide perovskite exhibits soft lattice properties due to the weak bonding properties between constituent elements, providing greater structural flexibility for triggering LOM Due to the poor stability of halide perovskite in water and polar solvents, researchers usually use various matrices (such as organic polymers, metal/non-metallic oxides, etc.) as external coatings to isolate halide perovskite nanocrystals from water, oxygen, etc. to improve the water stability of perovskite However, considering the high current density of industrial water electrolysis for hydrogen production and the requirements for long-term durability of catalysts, the lack of stability of halide perovskite water in composite materials and the lack of exposed catalytic active sites are the main obstacles to their electrocatalytic water oxidation Molecular sieves are a type of inorganic crystalline materials with ordered porous structures. Compared with other matrices, they have advantages such as large specific surface area, regular pore structure, good heat resistance and hydrothermal stability, and low cost In addition, the diversity of molecular sieve skeleton topology and pore structure allows it to serve as the host matrix for loading and stabilizing guest species, such as single atoms, nanoclusters, and metal nanoparticles; Its rich interactions with the guest exhibit physical and chemical properties different from those of the original molecular sieve or free guest species Recently, we reported on metal halide perovskite molecular sieve composite materials MAPbX3@AlPO-5 (MA represents methylamine ion, X represents halogen ion, and AlPO-5 is aluminum phosphate molecular sieve) is used for efficient and sustainable alkaline OER reaction, and advanced experimental characterization and theoretical calculation are combined to elucidate MAPbX3@AlPO-5 The surface reconstruction process in water oxidation reveals the important role of soft lattice halide perovskite in the formation of VOs and activation of LOM. The research findings are published in Advanced Materials A series of MAPbBrxI3-x @ AlPO-5 (x=0,1,2,3) composite materials were prepared using a simple impregnation annealing method Grazing incidence X-ray diffraction (GIXRD) verified the phase composition and crystal structure of the composite material; Transmission electron microscopy (TEM) images indicate the average particle size of MAPbBr3 nanocrystals
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Science Bulletin
Chinese Science Bulletin 综合性期刊-综合性期刊
自引率
0.00%
发文量
31457
审稿时长
2.6 months
期刊介绍: Chinese Science Bulletin (CSB) was established in 1950 and is currently published three issues every month. It is indexed by Ei Compendex, ESCI (Emerging Sources Citation Index)and Chinese Science Citation Database (CSCD),etc. CSB is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and National Natural Science Foundation of China (NSFC). CSB is committed to rapidly reporting the most advanced developments in natural sciences and engineering and to serving the scientific community with valuable insights into upcoming trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信