Oxidation Characteristics of Water Soluble Fractions of Agro-Stalks with Focus on Function of Reactive Inorganics

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY
R. Zhao, F. He, F. Behrendt, J. Cai, A. Dieguez-Alonso, Y. Liu
{"title":"Oxidation Characteristics of Water Soluble Fractions of Agro-Stalks with Focus on Function of Reactive Inorganics","authors":"R. Zhao, F. He, F. Behrendt, J. Cai, A. Dieguez-Alonso, Y. Liu","doi":"10.18321/ectj1101","DOIUrl":null,"url":null,"abstract":"In order to deepen the understanding of the thermochemical behavior of reactive inorganics, which play an important role in slagging and fouling during combustion of agro-stalks, the oxidation behavior of the water-soluble fraction of corn stover, wheat straw and rice straw was examined using a simultaneous thermogravimetric analyzer. The oxidation characteristics were discussed in combination with elemental analysis of water-soluble fractions. Results showed that reactive inorganics elements account for 30–40% in water-soluble fractions of the three agro-stalks and carbon was oxidized at two separate stages. Four stages were found during oxidation of water-soluble fractions – (1) devolatilisation of organics (100‒400 °C); (2) oxidation of char (400–650 °C); (3) oxidation of char with melting of salts or decomposition of carbonate (650–800 °C); (4) vaporization of KCl (800–1000 °C). This work provides a base study for an optimized design of combustion for agro-stalks and pharmaceutical waste.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In order to deepen the understanding of the thermochemical behavior of reactive inorganics, which play an important role in slagging and fouling during combustion of agro-stalks, the oxidation behavior of the water-soluble fraction of corn stover, wheat straw and rice straw was examined using a simultaneous thermogravimetric analyzer. The oxidation characteristics were discussed in combination with elemental analysis of water-soluble fractions. Results showed that reactive inorganics elements account for 30–40% in water-soluble fractions of the three agro-stalks and carbon was oxidized at two separate stages. Four stages were found during oxidation of water-soluble fractions – (1) devolatilisation of organics (100‒400 °C); (2) oxidation of char (400–650 °C); (3) oxidation of char with melting of salts or decomposition of carbonate (650–800 °C); (4) vaporization of KCl (800–1000 °C). This work provides a base study for an optimized design of combustion for agro-stalks and pharmaceutical waste.
秸秆水溶性组分的氧化特性及活性无机物的作用
为了加深对活性无机物的热化学行为的理解,利用同时热重分析仪对玉米秸秆、小麦秸秆和水稻秸秆的水溶性组分的氧化行为进行了研究。结合水溶性组分的元素分析讨论了氧化特性。结果表明,活性无机元素在三种秸秆的水溶性组分中占30–40%,碳在两个不同的阶段被氧化。在水溶性组分的氧化过程中发现了四个阶段——(1)有机物的脱挥发分(100-400°C);(2) 焦炭氧化(400–650°C);(3) 焦炭的氧化与盐的熔融或碳酸盐的分解(650–800°C);(4) KCl的蒸发(800–1000°C)。这项工作为农业秸秆和医药废物的燃烧优化设计提供了基础研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信