Mathematical Modelling of the COVID-19 Epidemic in Northern Ireland in 2020

P. Hall, G. Kiss, Tilmann E. Kuhn, S. Moutari, E. Patterson, Emily R. Smith
{"title":"Mathematical Modelling of the COVID-19 Epidemic in Northern Ireland in 2020","authors":"P. Hall, G. Kiss, Tilmann E. Kuhn, S. Moutari, E. Patterson, Emily R. Smith","doi":"10.4236/OJMSI.2021.92006","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the dynamics of the COVID-19 epidemic in \nNorthern Ireland from 1st March 2020 up to 25th \nDecember 2020, using several copies of a Susceptible-Exposed-Infectious-Recovered \n(SEIR) compartmental \nmodel, and compare it to a detailed publicly available dataset. We split the data into 10 time \nintervals and fit the models on the consecutive intervals to the cumulative \nnumber of confirmed positive cases on each interval. Using the fitted parameter \nestimates, we also provide estimates of the reproduction number. We also discuss the limitations and possible \nextensions of the employed model.","PeriodicalId":56990,"journal":{"name":"建模与仿真(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"建模与仿真(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJMSI.2021.92006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the dynamics of the COVID-19 epidemic in Northern Ireland from 1st March 2020 up to 25th December 2020, using several copies of a Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental model, and compare it to a detailed publicly available dataset. We split the data into 10 time intervals and fit the models on the consecutive intervals to the cumulative number of confirmed positive cases on each interval. Using the fitted parameter estimates, we also provide estimates of the reproduction number. We also discuss the limitations and possible extensions of the employed model.
2020年北爱尔兰COVID-19流行的数学模型
在本研究中,我们研究了2020年3月1日至2020年12月25日北爱尔兰COVID-19流行的动态,使用了易感-暴露-感染-恢复(SEIR)分区模型的几个副本,并将其与详细的公开数据集进行了比较。我们将数据分成10个时间间隔,并将连续间隔上的模型拟合为每个间隔上的累计确诊阳性病例数。利用拟合参数估计,我们还提供了再现数的估计。我们还讨论了所采用模型的局限性和可能的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信