Making causal inferences about treatment effect sizes from observational datasets

Q3 Medicine
T. Kashner, Steven S. Henley, R. Golden, Xiao‐Hua Zhou
{"title":"Making causal inferences about treatment effect sizes from observational datasets","authors":"T. Kashner, Steven S. Henley, R. Golden, Xiao‐Hua Zhou","doi":"10.1080/24709360.2019.1681211","DOIUrl":null,"url":null,"abstract":"In the era of big data and cloud computing, analysts need statistical models to go beyond predicting outcomes to forecasting how outcomes change when decision-makers intervene to change one or more causal factors. This paper reviews methods to estimate the causal effects of treatment choices on patient health outcomes using observational datasets. Methods are limited to those that model choice of treatment (propensity scoring) and treatment outcomes (instrumental variable, difference in differences, control function). A regression framework was developed to show how unobserved confounding covariates and heterogeneous outcomes can introduce biases to effect size estimates. In response to criticisms that outcome approaches are not systematic and subject to model misspecification error, we extend the control function approach of Lu and White by applying Best Approximating Model technology (BAM-CF). Results from simulation experiments are presented to compare biases between BAM-CF and propensity scoring in the presence of an unobserved confounder. We conclude no one strategy is ‘optimal’ for all datasets, and analyst should consider multiple approaches to assess robustness. For both observational and randomized datasets, researchers should assess how moderating covariates impact estimates of treatment effect sizes so that clinicians can understand what is best for each individual patient.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"4 1","pages":"48 - 83"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2019.1681211","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2019.1681211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

Abstract

In the era of big data and cloud computing, analysts need statistical models to go beyond predicting outcomes to forecasting how outcomes change when decision-makers intervene to change one or more causal factors. This paper reviews methods to estimate the causal effects of treatment choices on patient health outcomes using observational datasets. Methods are limited to those that model choice of treatment (propensity scoring) and treatment outcomes (instrumental variable, difference in differences, control function). A regression framework was developed to show how unobserved confounding covariates and heterogeneous outcomes can introduce biases to effect size estimates. In response to criticisms that outcome approaches are not systematic and subject to model misspecification error, we extend the control function approach of Lu and White by applying Best Approximating Model technology (BAM-CF). Results from simulation experiments are presented to compare biases between BAM-CF and propensity scoring in the presence of an unobserved confounder. We conclude no one strategy is ‘optimal’ for all datasets, and analyst should consider multiple approaches to assess robustness. For both observational and randomized datasets, researchers should assess how moderating covariates impact estimates of treatment effect sizes so that clinicians can understand what is best for each individual patient.
根据观察数据集对治疗效果大小进行因果推断
在大数据和云计算时代,分析师需要统计模型超越预测结果,预测决策者干预改变一个或多个因果因素时结果如何变化。本文回顾了使用观察数据集估计治疗选择对患者健康结果的因果效应的方法。方法仅限于对治疗选择(倾向评分)和治疗结果(工具变量、差异中的差异、控制函数)进行建模的方法。开发了一个回归框架,以显示未观察到的混杂协变量和异质结果如何在效应大小估计中引入偏差。针对结果方法不系统且容易产生模型错定性误差的批评,我们通过应用最佳逼近模型技术(BAM-CF)扩展了Lu和White的控制函数方法。模拟实验的结果提出了比较偏差之间的BAM-CF和倾向评分在一个未观察到的混杂因素的存在。我们得出结论,没有一种策略对所有数据集都是“最优”的,分析师应该考虑多种方法来评估稳健性。对于观察性数据集和随机数据集,研究人员应该评估调节协变量如何影响治疗效果大小的估计,以便临床医生能够了解对每个患者最好的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信