{"title":"Phylogeny and age of cockroaches: a reanalysis of mitogenomes with selective fossil calibrations","authors":"Xin-Ran Li","doi":"10.3897/dez.69.68373","DOIUrl":null,"url":null,"abstract":"In spite of big data and new techniques, the phylogeny and timing of cockroaches remain in dispute. Apart from sequencing more species, an alternative way to improve the phylogenetic inference and time estimation is to improve the quality of data, calibrations and analytical procedure. This study emphasizes the completeness of data, the reliability of genes (judged via alignment ambiguity and substitution saturation), and the justification for fossil calibrations. Based on published mitochondrial genomes, the Bayesian phylogeny of cockroaches and termites is recovered as: Corydiinae + (((Cryptocercidae + Isoptera) + ((Anaplectidae + Lamproblattidae) + (Tryonicidae + Blattidae))) + (Pseudophyllodromiinae + (Ectobiinae + (Blattellinae + Blaberidae)))). With two fossil calibrations, namely, Valditermes brenanae and Piniblattella yixianensis, this study dates the crown Dictyoptera to early Jurassic, and crown Blattodea to middle Jurassic. Using the ambiguous ‘roachoid’ fossils to calibrate Dictyoptera+sister pushes these times back to Permian and Triassic. This study also shows that appropriate fossil calibrations are rarer than considered in previous studies.","PeriodicalId":50592,"journal":{"name":"Deutsche Entomologische Zeitschrift","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deutsche Entomologische Zeitschrift","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3897/dez.69.68373","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
In spite of big data and new techniques, the phylogeny and timing of cockroaches remain in dispute. Apart from sequencing more species, an alternative way to improve the phylogenetic inference and time estimation is to improve the quality of data, calibrations and analytical procedure. This study emphasizes the completeness of data, the reliability of genes (judged via alignment ambiguity and substitution saturation), and the justification for fossil calibrations. Based on published mitochondrial genomes, the Bayesian phylogeny of cockroaches and termites is recovered as: Corydiinae + (((Cryptocercidae + Isoptera) + ((Anaplectidae + Lamproblattidae) + (Tryonicidae + Blattidae))) + (Pseudophyllodromiinae + (Ectobiinae + (Blattellinae + Blaberidae)))). With two fossil calibrations, namely, Valditermes brenanae and Piniblattella yixianensis, this study dates the crown Dictyoptera to early Jurassic, and crown Blattodea to middle Jurassic. Using the ambiguous ‘roachoid’ fossils to calibrate Dictyoptera+sister pushes these times back to Permian and Triassic. This study also shows that appropriate fossil calibrations are rarer than considered in previous studies.
期刊介绍:
Founded in 1857 as Berliner Entomologische Zeitschrift, Deutsche Entomologische Zeitschrift is one of the World''s oldest international journals of systematic entomology. It publishes original research papers in English on the systematics, taxonomy, phylogeny, comparative morphology, and biogeography of insects. Other arthropods are also considered where of relevance to the biology of insects. The geographical scope of the journal is worldwide.
Deutsche Entomologische Zeitschrift (DEZ) is dedicated to provide an open access, high-quality forum to contribute to the documentation of insect species, their distribution, their properties, and their phylogenetic relationships. All submitted manuscripts are subject to peer-review by the leading specialists for the respective topic. The journal is published in open access high-resolution PDF, semantically enriched HTML and machine-readable XML versions.