Felipe Vásquez-Lavín , Leonardo Vargas O , José I. Hernández , Roberto D. Ponce Oliva
{"title":"Water demand in the Chilean manufacturing industry: Analysis of the economic value of water and demand elasticities","authors":"Felipe Vásquez-Lavín , Leonardo Vargas O , José I. Hernández , Roberto D. Ponce Oliva","doi":"10.1016/j.wre.2020.100159","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this article, we estimate both the economic value of water and own-price and cross-price elasticities of water for the Chilean manufacturing industry using the production function approach. Estimating the production function allows us to estimate the marginal productivity of water which corresponds to its economic value. Our estimations are based on panel data obtained from the National Industrial Survey for the period 1995–2014, accounting for more than 10,000 industrial plants. We use a translog specification for the production function, considering water, capital, labor, energy, and intermediate material as explanatory variables. We find substitution patterns among most inputs, except for energy and water, which are found to be complements. Our results suggest that the manufacturing sector is characterized by an elastic water demand, with an average economic value of water of 8.071 [USD/m</span><sup>3</sup>]. Based on our findings, there is room to increase water prices in most sectors without affecting the competitiveness of firms. Knowing the economic value of water and its price elasticity could help policymakers to design water policies that promote more efficient use of this scarce resource.</p></div>","PeriodicalId":48644,"journal":{"name":"Water Resources and Economics","volume":"32 ","pages":"Article 100159"},"PeriodicalIF":2.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.wre.2020.100159","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Economics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212428420300049","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 13
Abstract
In this article, we estimate both the economic value of water and own-price and cross-price elasticities of water for the Chilean manufacturing industry using the production function approach. Estimating the production function allows us to estimate the marginal productivity of water which corresponds to its economic value. Our estimations are based on panel data obtained from the National Industrial Survey for the period 1995–2014, accounting for more than 10,000 industrial plants. We use a translog specification for the production function, considering water, capital, labor, energy, and intermediate material as explanatory variables. We find substitution patterns among most inputs, except for energy and water, which are found to be complements. Our results suggest that the manufacturing sector is characterized by an elastic water demand, with an average economic value of water of 8.071 [USD/m3]. Based on our findings, there is room to increase water prices in most sectors without affecting the competitiveness of firms. Knowing the economic value of water and its price elasticity could help policymakers to design water policies that promote more efficient use of this scarce resource.
期刊介绍:
Water Resources and Economics is one of a series of specialist titles launched by the highly-regarded Water Research. For the purpose of sustainable water resources management, understanding the multiple connections and feedback mechanisms between water resources and the economy is crucial. Water Resources and Economics addresses the financial and economic dimensions associated with water resources use and governance, across different economic sectors like agriculture, energy, industry, shipping, recreation and urban and rural water supply, at local, regional and transboundary scale.
Topics of interest include (but are not restricted to) the economics of:
Aquatic ecosystem services-
Blue economy-
Climate change and flood risk management-
Climate smart agriculture-
Coastal management-
Droughts and water scarcity-
Environmental flows-
Eutrophication-
Food, water, energy nexus-
Groundwater management-
Hydropower generation-
Hydrological risks and uncertainties-
Marine resources-
Nature-based solutions-
Resource recovery-
River restoration-
Storm water harvesting-
Transboundary water allocation-
Urban water management-
Wastewater treatment-
Watershed management-
Water health risks-
Water pollution-
Water quality management-
Water security-
Water stress-
Water technology innovation.