An Assessment of Spatial Distribution of Four Different Satellite-Derived Rainfall Estimations and Observed Precipitation over Bangladesh

D. Roy, S. Hassan, Syeda Sabrina Sultana
{"title":"An Assessment of Spatial Distribution of Four Different Satellite-Derived Rainfall Estimations and Observed Precipitation over Bangladesh","authors":"D. Roy, S. Hassan, Syeda Sabrina Sultana","doi":"10.4236/jacen.2020.94016","DOIUrl":null,"url":null,"abstract":"Given that precipitation is a major component of the \nearth’s water and energy cycles, reliable information on the monthly spatial \ndistribution of precipitation is also crucial for climate science, \nclimatological water-resource research studies, \nand for the evaluation of regional model simulations. In this paper, four \nsatellite derived precipitation datasets: Climate Prediction Center MORPHING (CMORPH), Tropical Rainfall Measuring \nMission (TRMM), the Precipitation Estimation Algorithm from Remotely-Sensed \nInformation using an Artificial Neural \nNetwork (PERSIANN), and the global Satellite Mapping of Precipitation \n(GSMaP) are spatially analyzed and \ncompared with the observed precipitation data provided by Bangladesh \nMeteorological Department (BMD). For this study, the different precipitations \ndata sets are spatially analyzed from 2nd May 2019 to 4th May 2019 at the time of Cyclone “FANI”. It is found that the satellite derived precipitation datasets are reasonably matched with the observed but slightly \ndifferent.","PeriodicalId":68148,"journal":{"name":"农业化学和环境(英文)","volume":"09 1","pages":"195-205"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"农业化学和环境(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/jacen.2020.94016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given that precipitation is a major component of the earth’s water and energy cycles, reliable information on the monthly spatial distribution of precipitation is also crucial for climate science, climatological water-resource research studies, and for the evaluation of regional model simulations. In this paper, four satellite derived precipitation datasets: Climate Prediction Center MORPHING (CMORPH), Tropical Rainfall Measuring Mission (TRMM), the Precipitation Estimation Algorithm from Remotely-Sensed Information using an Artificial Neural Network (PERSIANN), and the global Satellite Mapping of Precipitation (GSMaP) are spatially analyzed and compared with the observed precipitation data provided by Bangladesh Meteorological Department (BMD). For this study, the different precipitations data sets are spatially analyzed from 2nd May 2019 to 4th May 2019 at the time of Cyclone “FANI”. It is found that the satellite derived precipitation datasets are reasonably matched with the observed but slightly different.
孟加拉国四种不同卫星降水量估算和观测降水量的空间分布评估
鉴于降水是地球水和能源循环的主要组成部分,关于降水月度空间分布的可靠信息对于气候科学、气候水资源研究和区域模型模拟的评估也至关重要。本文使用了四个卫星衍生的降水数据集:气候预测中心形态(CMORPH)、热带降雨测量任务(TRMM)、利用人工神经网络的遥感信息降水估计算法(PERSIANN),和全球卫星降水图(GSMaP)进行了空间分析,并与孟加拉国气象部门(BMD)提供的观测降水数据进行了比较。在本研究中,对2019年5月2日至5月4日“法尼”气旋期间的不同降水量数据集进行了空间分析。研究发现,卫星衍生的降水数据集与观测到的数据集匹配合理,但略有不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
148
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信