NUMERICAL COMPUTATIONS OF GENERAL NON-LINEAR THIRD ORDER BOUNDARY VALUE PROBLEMS BY GALERKIN WEIGHTED RESIDUAL TECHNIQUE WITH MODIFIED LEGENDRE AND BEZIER POLYNOMIALS

Nazrul Islam, M. A. Arefin, M. N. Dhali
{"title":"NUMERICAL COMPUTATIONS OF GENERAL NON-LINEAR THIRD ORDER BOUNDARY VALUE PROBLEMS BY GALERKIN WEIGHTED RESIDUAL TECHNIQUE WITH MODIFIED LEGENDRE AND BEZIER POLYNOMIALS","authors":"Nazrul Islam, M. A. Arefin, M. N. Dhali","doi":"10.26480/msmk.01.2021.24.28","DOIUrl":null,"url":null,"abstract":"Several different approaches are implemented and used to solve higher order non-linear boundary value problems (BVPs). Galerkin weighted residual technique (GWRT) are commonly used to solve linear and non-linear BVPs. In this paper, we have proposed GWRT for the numerical computations of general third order three-point non-linear BVPs. Modified Legendre and Bezier Polynomials, over the interval [0, 1], are chosen separately as a basis functions. The main advantage of this method is its efficiency and simple applicability. Numerical result is presented to illustrate the performance of the proposed method. The results clearly show that the proposed method is suitable for solving third order nonlinear BVPs","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.01.2021.24.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several different approaches are implemented and used to solve higher order non-linear boundary value problems (BVPs). Galerkin weighted residual technique (GWRT) are commonly used to solve linear and non-linear BVPs. In this paper, we have proposed GWRT for the numerical computations of general third order three-point non-linear BVPs. Modified Legendre and Bezier Polynomials, over the interval [0, 1], are chosen separately as a basis functions. The main advantage of this method is its efficiency and simple applicability. Numerical result is presented to illustrate the performance of the proposed method. The results clearly show that the proposed method is suitable for solving third order nonlinear BVPs
用改进LEGENDRE和BEZIER多项式的GALERKIN加权残差技术计算一般非线性三阶边值问题
实现并使用了几种不同的方法来解决高阶非线性边值问题。Galerkin加权残差技术(GWRT)常用于求解线性和非线性边值问题。在本文中,我们提出了用于一般三阶三点非线性BVP数值计算的GWRT。在区间[0,1]上,分别选择修正的勒让德多项式和贝塞尔多项式作为基函数。这种方法的主要优点是它的效率和简单的适用性。数值结果表明了该方法的有效性。结果表明,该方法适用于求解三阶非线性边值问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信