Integrability and Non-Existence of Periodic Orbits for a Class of Kolmogorov Systems

Q4 Mathematics
Sarbast M. Hussein, T. Salhi, Bo Huang
{"title":"Integrability and Non-Existence of Periodic Orbits for a Class of Kolmogorov Systems","authors":"Sarbast M. Hussein, T. Salhi, Bo Huang","doi":"10.2478/tmmp-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the integrability and the non-existence of periodic orbits for the planar Kolmogorov differential systems of the form x˙=x(Rn-1(x,y)+Pn(x,y)+Sn+1(x,y)),y˙=y(Rn-1(x,y)+Qn(x,y)+Sn+1(x,y)), \\matrix{ {\\dot x = x\\left( {{R_{n - 1}}\\left( {x,y} \\right) + {P_n}\\left( {x,y} \\right) + {S_{n + 1}}\\left( {x,y} \\right)} \\right),} \\hfill \\cr {\\dot y = y\\left( {{R_{n - 1}}\\left( {x,y} \\right) + {Q_n}\\left( {x,y} \\right) + {S_{n + 1}}\\left( {x,y} \\right)} \\right),} \\hfill \\cr } where n is a positive integer, Rn−1, Pn, Qn and Sn+1 are homogeneous polynomials of degree n − 1, n, n and n + 1, respectively. Applications of Kolmogorov systems can be found particularly in modeling population dynamics in biology and ecology.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"81 1","pages":"145 - 154"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2022-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we study the integrability and the non-existence of periodic orbits for the planar Kolmogorov differential systems of the form x˙=x(Rn-1(x,y)+Pn(x,y)+Sn+1(x,y)),y˙=y(Rn-1(x,y)+Qn(x,y)+Sn+1(x,y)), \matrix{ {\dot x = x\left( {{R_{n - 1}}\left( {x,y} \right) + {P_n}\left( {x,y} \right) + {S_{n + 1}}\left( {x,y} \right)} \right),} \hfill \cr {\dot y = y\left( {{R_{n - 1}}\left( {x,y} \right) + {Q_n}\left( {x,y} \right) + {S_{n + 1}}\left( {x,y} \right)} \right),} \hfill \cr } where n is a positive integer, Rn−1, Pn, Qn and Sn+1 are homogeneous polynomials of degree n − 1, n, n and n + 1, respectively. Applications of Kolmogorov systems can be found particularly in modeling population dynamics in biology and ecology.
一类Kolmogorov系统周期轨道的可积性与不存在性
摘要在本文中,我们研究了形式为x*=x(Rn-1(x,y)+Pn(x,y)+Sn+1 1}}\left({x,}\hfill\cr{\dot y=y\left({R_{n-1}}\left({x,y}\right)+{Q_n}\left({x,y}\right)+{S_{n+1}\left({x,y}\right)}\right),}\hfill\cor}其中n是正整数,Rn−1、Pn、Qn和Sn+1分别是n−1,n,n和n+1次的齐次多项式。Kolmogorov系统的应用尤其可以在生物学和生态学中的种群动力学建模中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信