{"title":"Oriented Borel–Moore homologies of toric varieties","authors":"Toni M. Annala","doi":"10.5802/aif.3452","DOIUrl":null,"url":null,"abstract":"— We generalize the well known Künneth formula for Chow groups to an arbitrary oriented Borel–Moore homology theory satisfying localization and descent (e.g. algebraic bordism) when taking a product with a toric variety. As a corollary we obtain a universal coefficient theorem for the operational cohomology rings. We also give a new, homological, description for the homology groups of smooth toric varieties, which allows us to compute the algebraic bordism groups of some singular toric varieties. Résumé. — Nous généralisons la formule de Künneth bien connue pour les groupes de Chow au cas d’une théorie homologique orientée de Borel–Moore arbitraire qui vérifient des propriétés de localisation et de descente (par exemple le bordisme algébrique) pour les produits avec une variété torique. En corollaire, nous obtenons un théorème de coefficients universels pour les anneaux de cohomologie opérationnelle. Nous donnons également une nouvelle description, de nature homologique, des groupes d’homologie des variétés toriques lisses, qui nous permet de calculer les groupes de bordisme algébrique de quelques variétés toriques singulières.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3452","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
— We generalize the well known Künneth formula for Chow groups to an arbitrary oriented Borel–Moore homology theory satisfying localization and descent (e.g. algebraic bordism) when taking a product with a toric variety. As a corollary we obtain a universal coefficient theorem for the operational cohomology rings. We also give a new, homological, description for the homology groups of smooth toric varieties, which allows us to compute the algebraic bordism groups of some singular toric varieties. Résumé. — Nous généralisons la formule de Künneth bien connue pour les groupes de Chow au cas d’une théorie homologique orientée de Borel–Moore arbitraire qui vérifient des propriétés de localisation et de descente (par exemple le bordisme algébrique) pour les produits avec une variété torique. En corollaire, nous obtenons un théorème de coefficients universels pour les anneaux de cohomologie opérationnelle. Nous donnons également une nouvelle description, de nature homologique, des groupes d’homologie des variétés toriques lisses, qui nous permet de calculer les groupes de bordisme algébrique de quelques variétés toriques singulières.
期刊介绍:
The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French.
The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.