{"title":"Restoring force model of steel‐recycled concrete composite frame with infilled recycled block wall","authors":"E. Meng, Yalin Yu, Xianggang Zhang, Y. Su","doi":"10.1002/tal.1944","DOIUrl":null,"url":null,"abstract":"To study the restoring force model of steel‐recycled concrete composite frame with infilled recycled block wall, the experimental results of two recycled concrete‐filled steel tube frames with infilled recycled block walls and three steel‐reinforced recycled concrete frames with infilled recycled block walls under low cyclic loading were analyzed. The four broken‐line skeleton curve model which was suitable for this kind of composite frame was proposed, and the calculation methods for different stages of the skeleton curve were given respectively. According to the hysteretic characteristics of different frame specimens, the hysteretic loops for steel‐recycled concrete composite frame with infilled recycled block wall were simplified by using the treat methods of positive and negative symmetry and sudden drop of bearing capacity, and the restoring force model for different type of steel‐recycled concrete composite frame with infilled recycled block wall was established. At the same time, combing the experimental results, the proposed restoring force model was verified. The results show that the established restoring force model can predict the hysteretic behavior of steel‐recycled concrete composite frame with infilled recycled block wall well, and it can provide theoretical support for the elastic–plastic time history analysis of this kind of frame structures under earthquake.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1944","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
To study the restoring force model of steel‐recycled concrete composite frame with infilled recycled block wall, the experimental results of two recycled concrete‐filled steel tube frames with infilled recycled block walls and three steel‐reinforced recycled concrete frames with infilled recycled block walls under low cyclic loading were analyzed. The four broken‐line skeleton curve model which was suitable for this kind of composite frame was proposed, and the calculation methods for different stages of the skeleton curve were given respectively. According to the hysteretic characteristics of different frame specimens, the hysteretic loops for steel‐recycled concrete composite frame with infilled recycled block wall were simplified by using the treat methods of positive and negative symmetry and sudden drop of bearing capacity, and the restoring force model for different type of steel‐recycled concrete composite frame with infilled recycled block wall was established. At the same time, combing the experimental results, the proposed restoring force model was verified. The results show that the established restoring force model can predict the hysteretic behavior of steel‐recycled concrete composite frame with infilled recycled block wall well, and it can provide theoretical support for the elastic–plastic time history analysis of this kind of frame structures under earthquake.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.