Masaki Okamura, R. Morita, Yumiko Arai-Sanoh, H. Yoshida, H. Nakagawa, N. Aoki
{"title":"Estimation of sink capacity of rice grains: A comparison of calculation methods based on 1000-grain weight and grain projected area","authors":"Masaki Okamura, R. Morita, Yumiko Arai-Sanoh, H. Yoshida, H. Nakagawa, N. Aoki","doi":"10.1080/1343943X.2023.2228500","DOIUrl":null,"url":null,"abstract":"ABSTRACT Accurate estimation of sink capacity in rice (grain number × potential grain size), independent of grain filling, is necessary for considering source – sink interactions. However, how to measure potential grain size is still a matter of debate. Here, we investigated the effect of modifying the grain-filling environment on 1000-grain weight of grains screened by specific gravity or brown rice thickness, grain projected area (‘grain area’), or husk weight as candidate indicators of potential grain size using a japonica cultivar Koshihikari and its near-isogenic line with greater spikelet number. We found grain area to be the best, followed by 1000-grain weight. We developed a novel method to calculate sink capacity from grain area; the method was developed based on the relationship between individual grain weight and grain area. Comparison with the conventional method based on 1000-grain weight showed that although the method based on grain area is more accurate, that based on 1000-grain weight is useful enough, because screening by specific gravity or brown rice thickness selected filled grains well, and the effect of the grain-filling environment on 1000-grain weight was limited. GRAPHICAL ABSTRACT","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":"26 1","pages":"236 - 248"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2023.2228500","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Accurate estimation of sink capacity in rice (grain number × potential grain size), independent of grain filling, is necessary for considering source – sink interactions. However, how to measure potential grain size is still a matter of debate. Here, we investigated the effect of modifying the grain-filling environment on 1000-grain weight of grains screened by specific gravity or brown rice thickness, grain projected area (‘grain area’), or husk weight as candidate indicators of potential grain size using a japonica cultivar Koshihikari and its near-isogenic line with greater spikelet number. We found grain area to be the best, followed by 1000-grain weight. We developed a novel method to calculate sink capacity from grain area; the method was developed based on the relationship between individual grain weight and grain area. Comparison with the conventional method based on 1000-grain weight showed that although the method based on grain area is more accurate, that based on 1000-grain weight is useful enough, because screening by specific gravity or brown rice thickness selected filled grains well, and the effect of the grain-filling environment on 1000-grain weight was limited. GRAPHICAL ABSTRACT
期刊介绍:
Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.