Shenqiang Hu, Li Li, Xufang Ren, Enhua Qing, D. Deng, H. He, Liang Li, Jiwen Wang
{"title":"Evidence for the Existence of Two Prolactin Isoforms in the Developing Pituitary Gland of the Goose (Anser cygnoides)","authors":"Shenqiang Hu, Li Li, Xufang Ren, Enhua Qing, D. Deng, H. He, Liang Li, Jiwen Wang","doi":"10.3409/fb_70-1.01","DOIUrl":null,"url":null,"abstract":"Compared to Galliformes such as chicken and turkey, very little is known about the existence and expression of isoforms of prolactin (PRL) in the pituitary glands of Anseriformes. In this study, by generating a rabbit-anti-goose (Anser cygnoides) PRL polyclonal\n antibody, we analysed the expression patterns of goose PRL isoforms in the embryonic and post-hatch development of the pituitary gland. Our results showed that two immunoreactive bands with molecular weights of about 23 and 26 kDa were detected using the Western blot technique, corresponding\n to the non-glycosylated (NG-) and the glycosylated (G-) isoform of PRL, respectively. The protein levels of the total PRL in a goose increased gradually from the embryonic day (ED) 22 to the post-hatch day (PD) 28, with a non-significant decrease on PD6. Furthermore, the percentage of G-PRL\n in the pituitary gland of the goose fluctuated from about 30.3% to 54.7% throughout the embryonic and post-hatch development. At the mRNA level, the expression of PRL increased steadily during the development and reached the highest levels on PD12, but later showed a non-significant\n decrease on PD28. The inconsistent expression patterns between the PRL mRNA and protein during the stages from PD6 to PD28 indicated that the PRL gene expression involves both transcriptional and post-translational regulation. Taken together, our data unequivocally demonstrated\n the existence of NG- and G-PRL in the pituitary gland of a goose and that the expression of the total PRL as well as the percentage of G-PRL significantly changed during embryonic and post-hatch development, indicating that the versatile biological functions of PRL during the ontogenesis of\n a goose could be closely related to changes in both its total expression and the degree of glycosylation in the pituitary gland.","PeriodicalId":50438,"journal":{"name":"Folia Biologica-Krakow","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Biologica-Krakow","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3409/fb_70-1.01","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Compared to Galliformes such as chicken and turkey, very little is known about the existence and expression of isoforms of prolactin (PRL) in the pituitary glands of Anseriformes. In this study, by generating a rabbit-anti-goose (Anser cygnoides) PRL polyclonal
antibody, we analysed the expression patterns of goose PRL isoforms in the embryonic and post-hatch development of the pituitary gland. Our results showed that two immunoreactive bands with molecular weights of about 23 and 26 kDa were detected using the Western blot technique, corresponding
to the non-glycosylated (NG-) and the glycosylated (G-) isoform of PRL, respectively. The protein levels of the total PRL in a goose increased gradually from the embryonic day (ED) 22 to the post-hatch day (PD) 28, with a non-significant decrease on PD6. Furthermore, the percentage of G-PRL
in the pituitary gland of the goose fluctuated from about 30.3% to 54.7% throughout the embryonic and post-hatch development. At the mRNA level, the expression of PRL increased steadily during the development and reached the highest levels on PD12, but later showed a non-significant
decrease on PD28. The inconsistent expression patterns between the PRL mRNA and protein during the stages from PD6 to PD28 indicated that the PRL gene expression involves both transcriptional and post-translational regulation. Taken together, our data unequivocally demonstrated
the existence of NG- and G-PRL in the pituitary gland of a goose and that the expression of the total PRL as well as the percentage of G-PRL significantly changed during embryonic and post-hatch development, indicating that the versatile biological functions of PRL during the ontogenesis of
a goose could be closely related to changes in both its total expression and the degree of glycosylation in the pituitary gland.
期刊介绍:
Folia Biologica (Kraków) is an international online open access journal accepting original scientific articles on various aspects of zoology: phylogeny, genetics, chromosomal studies, ecology, biogeography, experimental zoology and ultrastructural studies. The language of publication is English, articles are assembled in four issues per year.