Biodegradable all-polymer field-effect transistors printed on Mater-Bi

IF 3.7 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Elena Stucchi, Ksenija Maksimovic, L. Bertolacci, F. Viola, A. Athanassiou, M. Caironi
{"title":"Biodegradable all-polymer field-effect transistors printed on Mater-Bi","authors":"Elena Stucchi, Ksenija Maksimovic, L. Bertolacci, F. Viola, A. Athanassiou, M. Caironi","doi":"10.1080/15980316.2021.1990145","DOIUrl":null,"url":null,"abstract":"The growing demand of disposable electronics raises serious concerns for the corresponding increase in the amount of electronic waste, with severe environmental impact. Organic and flexible electronics have been proposed long ago as a more sustainable and energy-efficient technological platform with respect to established ones. Yet, such technology is leading to a drastic increase of plastic waste if common approaches for flexible substrates are followed. In this scenario, biodegradable solutions can significantly limit the environmental impact, actively contributing to eliminate the waste streams (plastic or electronic) associated with disposal of devices. However, achieving suitably scalable processes to pattern mechanically robust organic electronics onto largely available biodegradable substrates is still an open challenge. In this work, all-organic and highly flexible field-effect transistors, inkjet printed onto the biodegradable and compostable commercial substrate Mater-Bi, are demonstrated. Because of the thermal instability of Mater-Bi, no annealing steps are applied, producing devices with limited carrier mobility, yet showing correct n-type behavior and robustness to bending and crumpling. The degradation behavior of the final system shows unaltered biodegradability level according to ISO 14851. These results represent a promising step toward sustainable flexible and large-area electronics, combining energy and materials efficient processes with largely available biodegradable substrates.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2021.1990145","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

The growing demand of disposable electronics raises serious concerns for the corresponding increase in the amount of electronic waste, with severe environmental impact. Organic and flexible electronics have been proposed long ago as a more sustainable and energy-efficient technological platform with respect to established ones. Yet, such technology is leading to a drastic increase of plastic waste if common approaches for flexible substrates are followed. In this scenario, biodegradable solutions can significantly limit the environmental impact, actively contributing to eliminate the waste streams (plastic or electronic) associated with disposal of devices. However, achieving suitably scalable processes to pattern mechanically robust organic electronics onto largely available biodegradable substrates is still an open challenge. In this work, all-organic and highly flexible field-effect transistors, inkjet printed onto the biodegradable and compostable commercial substrate Mater-Bi, are demonstrated. Because of the thermal instability of Mater-Bi, no annealing steps are applied, producing devices with limited carrier mobility, yet showing correct n-type behavior and robustness to bending and crumpling. The degradation behavior of the final system shows unaltered biodegradability level according to ISO 14851. These results represent a promising step toward sustainable flexible and large-area electronics, combining energy and materials efficient processes with largely available biodegradable substrates.
Mater Bi上印制的可生物降解全聚合物场效应晶体管
一次性电子产品需求的增长引发了人们对电子垃圾数量相应增加的严重担忧,并对环境产生了严重影响。有机和柔性电子产品早就被认为是一个比现有技术更可持续、更节能的技术平台。然而,如果采用柔性基板的通用方法,这种技术将导致塑料垃圾的急剧增加。在这种情况下,可生物降解的解决方案可以显著限制环境影响,积极有助于消除与设备处理相关的废物流(塑料或电子)。然而,实现适当的可扩展工艺,将机械坚固的有机电子器件图案形成在大量可用的可生物降解基底上,仍然是一个悬而未决的挑战。在这项工作中,展示了所有有机和高度柔性的场效应晶体管,喷墨印刷在可生物降解和可堆肥的商业基底Mater Bi上。由于Mater-Bi的热不稳定性,没有应用退火步骤,生产出具有有限载流子迁移率的器件,但显示出正确的n型行为和对弯曲和起皱的鲁棒性。根据ISO 14851,最终系统的降解行为显示出不变的生物降解性水平。这些结果代表着朝着可持续的柔性和大面积电子产品迈出了有希望的一步,将能源和材料高效的工艺与大量可生物降解的基材相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Display
Journal of Information Display MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.10
自引率
5.40%
发文量
27
审稿时长
30 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信