Ehsan ul haq, H. Nasir, Asif Iqbal, Muhammad Ali Qadir
{"title":"Comparative study of Kalman filter-based target motion analysis by incorporating Doppler frequency measurements","authors":"Ehsan ul haq, H. Nasir, Asif Iqbal, Muhammad Ali Qadir","doi":"10.21307/IJSSIS-2021-008","DOIUrl":null,"url":null,"abstract":"Abstract Target motion analysis is a key requirement of autonomous and self-driving machines like drones and robots. However, with strict weight limits, the aerospace industry is always on the hunt for simpler and lighter sensing solutions. Continuous-wave Doppler radars are the simplest radars that can easily obtain a target’s relative velocity using the Doppler shift in the received wave. However, these radars cannot provide the target’s range. In this work, we address the problem of obtaining target’s range and velocity by incorporating Doppler frequency measurements from a simple continuous wave Doppler radar. To this end, we find out the movement patterns and maneuvers that an observer can make to converge to the target’s location. After presenting the observability requirements, we design and compare various non-linear Kalman filter-based target trackers. We experimented with different simulation scenarios to compare the tracking results with bearings-only, frequency-only, and bearings-frequency measurement sets. In our analysis, Unscented Kalman Filter with bearings-frequency measurements performed best. Experiments show that an observer can locate the target accurately within 10 cm by incorporating Doppler frequency measurements. Moreover, it also reduced the convergence time to a fraction of a second.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":"1 - 12"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/IJSSIS-2021-008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Target motion analysis is a key requirement of autonomous and self-driving machines like drones and robots. However, with strict weight limits, the aerospace industry is always on the hunt for simpler and lighter sensing solutions. Continuous-wave Doppler radars are the simplest radars that can easily obtain a target’s relative velocity using the Doppler shift in the received wave. However, these radars cannot provide the target’s range. In this work, we address the problem of obtaining target’s range and velocity by incorporating Doppler frequency measurements from a simple continuous wave Doppler radar. To this end, we find out the movement patterns and maneuvers that an observer can make to converge to the target’s location. After presenting the observability requirements, we design and compare various non-linear Kalman filter-based target trackers. We experimented with different simulation scenarios to compare the tracking results with bearings-only, frequency-only, and bearings-frequency measurement sets. In our analysis, Unscented Kalman Filter with bearings-frequency measurements performed best. Experiments show that an observer can locate the target accurately within 10 cm by incorporating Doppler frequency measurements. Moreover, it also reduced the convergence time to a fraction of a second.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity