Subdifferentials of Value Functions in Nonconvex Dynamic Programming for Nonstationary Stochastic Processes

Q2 Mathematics
B. Mordukhovich, Nobusumi Sagara
{"title":"Subdifferentials of Value Functions in Nonconvex Dynamic Programming for Nonstationary Stochastic Processes","authors":"B. Mordukhovich, Nobusumi Sagara","doi":"10.31390/COSA.13.3.05","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to apply the machinery of variational analysis and generalized differentiation to study infinite horizon stochastic dynamic programming (DP) with discrete time in the Banach space setting without convexity assumptions. Unlike to standard stochastic DP with stationary Markov processes, we investigate here stochastic DP in $L^p$ spaces to deal with nonstationary stochastic processes, which describe a more flexible learning procedure for the decision-maker. Our main concern is to calculate generalized subgradients of the corresponding value function and to derive necessary conditions for optimality in terms of the stochastic Euler inclusion under appropriate Lipschitzian assumptions. The usage of the subdifferential formula for integral functionals on $L^p$ spaces allows us, in particular, to find verifiable conditions to ensure smoothness of the value function without any convexity and/or interiority assumptions.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.13.3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

The main goal of this paper is to apply the machinery of variational analysis and generalized differentiation to study infinite horizon stochastic dynamic programming (DP) with discrete time in the Banach space setting without convexity assumptions. Unlike to standard stochastic DP with stationary Markov processes, we investigate here stochastic DP in $L^p$ spaces to deal with nonstationary stochastic processes, which describe a more flexible learning procedure for the decision-maker. Our main concern is to calculate generalized subgradients of the corresponding value function and to derive necessary conditions for optimality in terms of the stochastic Euler inclusion under appropriate Lipschitzian assumptions. The usage of the subdifferential formula for integral functionals on $L^p$ spaces allows us, in particular, to find verifiable conditions to ensure smoothness of the value function without any convexity and/or interiority assumptions.
非平稳随机过程非凸动态规划中值函数的次微分
本文的主要目的是应用变分分析和广义微分机制,在没有凸性假设的Banach空间环境中研究具有离散时间的无限时域随机动态规划。与具有平稳马尔可夫过程的标准随机DP不同,我们研究了$L^p$空间中的随机DP来处理非平稳随机过程,这为决策者描述了一种更灵活的学习过程。我们主要关注的是计算相应值函数的广义次梯度,并在适当的Lipschitzian假设下,根据随机Euler包含导出最优性的必要条件。在$L^p$空间上使用积分泛函的次微分公式,特别允许我们找到可验证的条件,以确保值函数的光滑性,而不存在任何凸性和/或内在性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications on Stochastic Analysis
Communications on Stochastic Analysis Mathematics-Statistics and Probability
CiteScore
2.40
自引率
0.00%
发文量
0
期刊介绍: The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信