EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

Pub Date : 2021-05-01 DOI:10.4134/JKMS.J200221
Yanxun Chang, Xiaoxiao Zhang
{"title":"EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS","authors":"Yanxun Chang, Xiaoxiao Zhang","doi":"10.4134/JKMS.J200221","DOIUrl":null,"url":null,"abstract":". Let G = ( V,E ) be a connected locally finite and weighted graph, ∆ p be the p -th graph Laplacian. Consider the p -th nonlinear equation − ∆ p u + h | u | p − 2 u = f ( x,u ) on G , where p > 2, h,f satisfy certain assumptions. Grigor’yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V . In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m -order differential operator L m,p , we also prove the existence of the nontrivial solution to the analogous nonlinear equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

. Let G = ( V,E ) be a connected locally finite and weighted graph, ∆ p be the p -th graph Laplacian. Consider the p -th nonlinear equation − ∆ p u + h | u | p − 2 u = f ( x,u ) on G , where p > 2, h,f satisfy certain assumptions. Grigor’yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V . In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m -order differential operator L m,p , we also prove the existence of the nontrivial solution to the analogous nonlinear equation.
分享
查看原文
局部有限图上一类非线性方程全局解的存在性
设G=(V,E)是一个连通的局部有限和加权图,∆p是第p个图拉普拉斯算子。考虑G上的第p个非线性方程−∆p u+h | u | p−2 u=f(x,u),其中p>2,h,f满足某些假设。Grigor’yan-Lin-Yang[24]证明了上述非线性方程在有界域中解的存在性Ω ⊂ 五、在本文中,我们通过修改[24]中的一些条件,证明了上述非线性方程在有限集V上存在严格正解。对于m阶微分算子LM,p,我们还证明了类似非线性方程非平凡解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信