The ruin problem for a Wiener process with state-dependent jumps

IF 0.3 Q4 MATHEMATICS, APPLIED
M. Lefebvre
{"title":"The ruin problem for a Wiener process with state-dependent jumps","authors":"M. Lefebvre","doi":"10.2478/jamsi-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"16 1","pages":"13 - 23"},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).
具有状态依赖跳跃的Wiener过程的破产问题
摘要设X(t)是一个跳跃扩散过程,其连续部分是维纳过程,设t(X)是它第一次离开区间(0,b),其中X=X(0)。跳跃是负的,它们的大小取决于X(t)的值。此外,可能存在从X(t)到0的跳跃。我们将概率p(x):=p[x(T(x))=0]所满足的积分微分方程转化为常微分方程,并在特定情况下显式求解该方程。我们还对T(x)的矩母函数感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
8
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信