{"title":"The ruin problem for a Wiener process with state-dependent jumps","authors":"M. Lefebvre","doi":"10.2478/jamsi-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"16 1","pages":"13 - 23"},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).