Bayesian Life Analysis of Generalized Chen's Population Under Progressive Censoring

IF 1.1 Q3 STATISTICS & PROBABILITY
A. Elshahhat, M. K. Rastogi
{"title":"Bayesian Life Analysis of Generalized Chen's Population Under Progressive Censoring","authors":"A. Elshahhat, M. K. Rastogi","doi":"10.18187/pjsor.v18i3.3766","DOIUrl":null,"url":null,"abstract":"Chen's model with bathtub shape provides an appropriate conceptual for the hazard rate of various industrial products and clinical cases. This article deals with the problem of estimating the model parameters, reliability and hazard functions of a three-parameter Chen distribution based on progressively Type-II censored sample have been obtained. Based on the s-normal approximation to the asymptotic distribution of the maximum likelihood estimates and log-transformed maximum likelihood estimates, the approximate confidence intervals for the unknown parameters, and any function of them, are constructed. Using independent gamma conjugate priors, the Bayes estimators of the unknown parameters and reliability characteristics are derived under different versions of a symmetric squared error loss functions. However, the Bayes estimators are obtained in a complex form, so we have been used Metropolis-Hastings sampler procedure to carry out the Bayes estimates and also to construct the corresponding credible intervals. To assess the performance of the proposed estimators, numerical results using Monte Carlo simulation study were reported. To determine the optimum censoring scheme among different competing censoring plans, some optimality criteria have been considered. A practical example using real-life data set, representing the survival times of head and neck cancer patients, is discussed to demonstrate how the applicability of the proposed methods in real phenomenon.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i3.3766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Chen's model with bathtub shape provides an appropriate conceptual for the hazard rate of various industrial products and clinical cases. This article deals with the problem of estimating the model parameters, reliability and hazard functions of a three-parameter Chen distribution based on progressively Type-II censored sample have been obtained. Based on the s-normal approximation to the asymptotic distribution of the maximum likelihood estimates and log-transformed maximum likelihood estimates, the approximate confidence intervals for the unknown parameters, and any function of them, are constructed. Using independent gamma conjugate priors, the Bayes estimators of the unknown parameters and reliability characteristics are derived under different versions of a symmetric squared error loss functions. However, the Bayes estimators are obtained in a complex form, so we have been used Metropolis-Hastings sampler procedure to carry out the Bayes estimates and also to construct the corresponding credible intervals. To assess the performance of the proposed estimators, numerical results using Monte Carlo simulation study were reported. To determine the optimum censoring scheme among different competing censoring plans, some optimality criteria have been considered. A practical example using real-life data set, representing the survival times of head and neck cancer patients, is discussed to demonstrate how the applicability of the proposed methods in real phenomenon.
渐进式审查下广义陈氏种群的贝叶斯寿命分析
Chen的浴缸形状模型为各种工业产品和临床病例的危害率提供了一个合适的概念。本文研究了基于渐进式ii型截尾样本的三参数Chen分布的模型参数估计问题,得到了其可靠性和危险函数。基于极大似然估计和对数变换极大似然估计的渐近分布的s正态近似,构造了未知参数及其任意函数的近似置信区间。利用独立共轭先验,导出了不同形式的对称平方误差损失函数下未知参数和可靠性特性的贝叶斯估计量。然而,贝叶斯估计量是复数形式的,因此我们使用Metropolis-Hastings抽样程序进行贝叶斯估计并构造相应的可信区间。为了评估所提出的估计器的性能,报告了蒙特卡罗模拟研究的数值结果。为了在不同的竞争审查方案中确定最优审查方案,考虑了一些最优准则。最后以头颈癌患者的生存时间为例,讨论了所提出的方法在实际现象中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信