A. de Manuel, Janet Delgado, Iris Parra Jounou, T. Ausín, D. Casacuberta, Maite Cruz, Ariel Guersenzvaig, Cristian Moyano, D. Rodríguez-Arias, J. Rueda, Á. Puyol
{"title":"Ethical assessments and mitigation strategies for biases in AI-systems used during the COVID-19 pandemic","authors":"A. de Manuel, Janet Delgado, Iris Parra Jounou, T. Ausín, D. Casacuberta, Maite Cruz, Ariel Guersenzvaig, Cristian Moyano, D. Rodríguez-Arias, J. Rueda, Á. Puyol","doi":"10.1177/20539517231179199","DOIUrl":null,"url":null,"abstract":"The main aim of this article is to reflect on the impact of biases related to artificial intelligence (AI) systems developed to tackle issues arising from the COVID-19 pandemic, with special focus on those developed for triage and risk prediction. A secondary aim is to review assessment tools that have been developed to prevent biases in AI systems. In addition, we provide a conceptual clarification for some terms related to biases in this particular context. We focus mainly on non-racial biases that may be less considered when addressing biases in AI systems in the existing literature. In the manuscript, we found that the existence of bias in AI systems used for COVID-19 can result in algorithmic justice and that the legal frameworks and strategies developed to prevent the apparition of bias have failed to adequately consider social determinants of health. Finally, we make some recommendations on how to include more diverse professional profiles in order to develop AI systems that increase the epistemic diversity needed to tackle AI biases during the COVID-19 pandemic and beyond.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231179199","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The main aim of this article is to reflect on the impact of biases related to artificial intelligence (AI) systems developed to tackle issues arising from the COVID-19 pandemic, with special focus on those developed for triage and risk prediction. A secondary aim is to review assessment tools that have been developed to prevent biases in AI systems. In addition, we provide a conceptual clarification for some terms related to biases in this particular context. We focus mainly on non-racial biases that may be less considered when addressing biases in AI systems in the existing literature. In the manuscript, we found that the existence of bias in AI systems used for COVID-19 can result in algorithmic justice and that the legal frameworks and strategies developed to prevent the apparition of bias have failed to adequately consider social determinants of health. Finally, we make some recommendations on how to include more diverse professional profiles in order to develop AI systems that increase the epistemic diversity needed to tackle AI biases during the COVID-19 pandemic and beyond.
期刊介绍:
Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government.
BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices.
BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.