{"title":"A new dynamical proof of the Shmerkin–Wu theorem","authors":"Tim Austin","doi":"10.3934/jmd.2022001","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">\\begin{document}$ a < b $\\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id=\"M2\">\\begin{document}$ 2 $\\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id=\"M3\">\\begin{document}$ A,B $\\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id=\"M4\">\\begin{document}$ [0,1] $\\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id=\"M5\">\\begin{document}$ a $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ b $\\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id=\"M7\">\\begin{document}$ C : = A\\times B $\\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id=\"M8\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id=\"M9\">\\begin{document}$ C $\\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\max\\{\\dim C,1\\} - 1 $\\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022001","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
Let \begin{document}$ a < b $\end{document} be multiplicatively independent integers, both at least \begin{document}$ 2 $\end{document}. Let \begin{document}$ A,B $\end{document} be closed subsets of \begin{document}$ [0,1] $\end{document} that are forward invariant under multiplication by \begin{document}$ a $\end{document}, \begin{document}$ b $\end{document} respectively, and let \begin{document}$ C : = A\times B $\end{document}. An old conjecture of Furstenberg asserted that any planar line \begin{document}$ L $\end{document} not parallel to either axis must intersect \begin{document}$ C $\end{document} in Hausdorff dimension at most \begin{document}$ \max\{\dim C,1\} - 1 $\end{document}. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.