Arithmetically equivalent fields in a Galois extension with Frobenius Galois group of 2-power degree

IF 0.5 4区 数学 Q3 MATHEMATICS
Masanari Kida
{"title":"Arithmetically equivalent fields in a Galois extension with Frobenius Galois group of 2-power degree","authors":"Masanari Kida","doi":"10.4153/S0008439522000388","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$F_{2^n}$\n be the Frobenius group of degree \n$2^n$\n and of order \n$2^n ( 2^n-1)$\n with \n$n \\ge 4$\n . We show that if \n$K/\\mathbb {Q} $\n is a Galois extension whose Galois group is isomorphic to \n$F_{2^n}$\n , then there are \n$\\dfrac {2^{n-1} +(-1)^n }{3}$\n intermediate fields of \n$K/\\mathbb {Q} $\n of degree \n$4 (2^n-1)$\n such that they are not conjugate over \n$\\mathbb {Q}$\n but arithmetically equivalent over \n$\\mathbb {Q}$\n . We also give an explicit method to construct these arithmetically equivalent fields.","PeriodicalId":55280,"journal":{"name":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","volume":"66 1","pages":"380 - 394"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin-Bulletin Canadien De Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439522000388","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let $F_{2^n}$ be the Frobenius group of degree $2^n$ and of order $2^n ( 2^n-1)$ with $n \ge 4$ . We show that if $K/\mathbb {Q} $ is a Galois extension whose Galois group is isomorphic to $F_{2^n}$ , then there are $\dfrac {2^{n-1} +(-1)^n }{3}$ intermediate fields of $K/\mathbb {Q} $ of degree $4 (2^n-1)$ such that they are not conjugate over $\mathbb {Q}$ but arithmetically equivalent over $\mathbb {Q}$ . We also give an explicit method to construct these arithmetically equivalent fields.
具有2-幂次Frobenius-Galois群的Galois推广中的算术等价域
摘要设$F_{2^n}$是阶为$2^n$且阶为$2^2(2^n-1)$且具有$n\ge4$的Frobenius群。我们证明,如果$K/\mathbb{Q}$是Galois扩张,其Galois群同构于$F_{2^n}$,则存在$K/\math bb{Q}$的$\dfrac{2^{n-1}+(-1)^ n}{3}$中间域,阶为$4(2^n-1)$,使得它们在$\mathbb{Q}$上不共轭,而是在$\math bb{Q}$上算术等价。我们还给出了构造这些算术等价域的显式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
68
审稿时长
24 months
期刊介绍: The Canadian Mathematical Bulletin was established in 1958 to publish original, high-quality research papers in all branches of mathematics and to accommodate the growing demand for shorter research papers. The Bulletin is a companion publication to the Canadian Journal of Mathematics that publishes longer papers. New research papers are published continuously online and collated into print issues four times each year. To be submitted to the Bulletin, papers should be at most 18 pages long and may be written in English or in French. Longer papers should be submitted to the Canadian Journal of Mathematics. Fondé en 1958, le Bulletin canadien de mathématiques (BCM) publie des articles d’avant-garde et de grande qualité dans toutes les branches des mathématiques, de même que pour répondre à la demande croissante d’articles scientifiques plus brefs. Le BCM se veut une publication complémentaire au Journal canadien de mathématiques, qui publie de longs articles. En ligne, il propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés quatre fois par année. Les textes présentés au BCM doivent compter au plus 18 pages et être rédigés en anglais ou en français. C’est le Journal canadien de mathématiques qui reçoit les articles plus longs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信