M. A. Fitriady, N. A. Rahmat, A. F. Mohammad, S.A. Zaki
{"title":"Numerical simulation of the boundary layer development behind a single quarter elliptic-wedge spire","authors":"M. A. Fitriady, N. A. Rahmat, A. F. Mohammad, S.A. Zaki","doi":"10.15282/jmes.17.2.2023.1.0745","DOIUrl":null,"url":null,"abstract":"For decades wind tunnel has been utilized to generate a quasi-atmospheric boundary layer to observe the wake flow around objects submerged within the Atmospheric Boundary Layer. The quarter elliptic-wedge spire is the most commonly used as a vortex generator among other passive devices. However, despite numerous past studies that utilize rows of spires to generate deep quasi-ABL, only a few researchers targeted spires as the main subject of their investigation. Hence, the present work originally aims to investigate the wake flow structure behind a single quarter elliptic-wedge spire and its aerodynamic interaction with a smooth wall boundary layer. A computational fluid dynamics simulation predicting the wake flow structure behind a single quarter elliptic-wedge spire was conducted using the OpenFOAM® software. The computational domain consists a smooth flat plate, and a single quarter elliptic-wedge spire. A comparison of two Reynolds-Averaged Navier–Stokes turbulence models, namely the k-ɛ model and the SST k-ω model, was conducted. A SIMPLE algorithm was used as the solver in the simulation iteration and ParaFOAM® was used as the post-processing software. The development of the boundary layer height from streamwise x0=0.5S to downwind x0=20S was observed. The mean vertical velocity profiles predicted by both turbulence models are in good agreement with the previous wind tunnel experimental results. However, the results obtained with the k-ɛ model were overpredicted compared to the results of the SST k-ω model causing deviation of the boundary layer height from the wind tunnel experimental data. This anomaly might be caused by the velocity deficit recovery above the boundary layer height region where the turbulence is low.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.17.2.2023.1.0745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For decades wind tunnel has been utilized to generate a quasi-atmospheric boundary layer to observe the wake flow around objects submerged within the Atmospheric Boundary Layer. The quarter elliptic-wedge spire is the most commonly used as a vortex generator among other passive devices. However, despite numerous past studies that utilize rows of spires to generate deep quasi-ABL, only a few researchers targeted spires as the main subject of their investigation. Hence, the present work originally aims to investigate the wake flow structure behind a single quarter elliptic-wedge spire and its aerodynamic interaction with a smooth wall boundary layer. A computational fluid dynamics simulation predicting the wake flow structure behind a single quarter elliptic-wedge spire was conducted using the OpenFOAM® software. The computational domain consists a smooth flat plate, and a single quarter elliptic-wedge spire. A comparison of two Reynolds-Averaged Navier–Stokes turbulence models, namely the k-ɛ model and the SST k-ω model, was conducted. A SIMPLE algorithm was used as the solver in the simulation iteration and ParaFOAM® was used as the post-processing software. The development of the boundary layer height from streamwise x0=0.5S to downwind x0=20S was observed. The mean vertical velocity profiles predicted by both turbulence models are in good agreement with the previous wind tunnel experimental results. However, the results obtained with the k-ɛ model were overpredicted compared to the results of the SST k-ω model causing deviation of the boundary layer height from the wind tunnel experimental data. This anomaly might be caused by the velocity deficit recovery above the boundary layer height region where the turbulence is low.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.