Singular limit problem of abstract second order evolution equations

IF 0.6 4区 数学 Q3 MATHEMATICS
R. Ikehata, M. Sobajima
{"title":"Singular limit problem of abstract second order evolution equations","authors":"R. Ikehata, M. Sobajima","doi":"10.14492/hokmj/2021-504","DOIUrl":null,"url":null,"abstract":"We consider the singular limit problem in a real Hilbert space for abstract second order evolution equations with a parameter $\\varepsilon \\in (0,1]$. We first give an alternative proof of the celebrated results due to Kisynski (1963) from the viewpoint of the energy method. Next we derive a more precise asymptotic profile as $\\varepsilon \\to +0$ of the solution itself depending on $\\varepsilon$ under rather high regularity assumptions on the initial data.","PeriodicalId":55051,"journal":{"name":"Hokkaido Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hokkaido Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14492/hokmj/2021-504","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the singular limit problem in a real Hilbert space for abstract second order evolution equations with a parameter $\varepsilon \in (0,1]$. We first give an alternative proof of the celebrated results due to Kisynski (1963) from the viewpoint of the energy method. Next we derive a more precise asymptotic profile as $\varepsilon \to +0$ of the solution itself depending on $\varepsilon$ under rather high regularity assumptions on the initial data.
抽象二阶演化方程的奇异极限问题
考虑具有参数$\varepsilon \in(0,1]$的抽象二阶演化方程在实数Hilbert空间中的奇异极限问题。我们首先从能量法的角度对Kisynski(1963)的著名结果给出了另一种证明。接下来,我们在初始数据的相当高的正则性假设下,根据解本身的$\varepsilon$推导出一个更精确的渐近轮廓为$\varepsilon$到+0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The main purpose of Hokkaido Mathematical Journal is to promote research activities in pure and applied mathematics by publishing original research papers. Selection for publication is on the basis of reports from specialist referees commissioned by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信